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FOREWORD

This study was sponsored by the Naval Electronics Systems Command, L
Munitions Building, Washington, D. C. The research was conducted by
Technology Incorporated, 7400 Colonel Glenn Highway, Dayton, Ohio, under
Contract N00039-69-C-1549, Project No. XF52545002 ("Long Range Night
Viewing") and Task No. RDT & E 8065. Mr. Patrick D. Fligor, Head,
Remote Sensing Section, was the principal investigator for Technology Incor-
:porated. Mr. Carl Rigdon, Code 0514312, of the Components Section, was
Contract Monitor for Naval Electronics Systems Command.

The research was entitled "Research and Investigation of Target Sig-
nature and Target Background Studies for Image Intensifiers." Research Li
started in December 1968 and was completed in Jrvy 1970. The Air Force
Avionics Laboratory, AVRS, cooperated in this study by allowing Technology
Incorporated to utilize software and data generated by this contractor during
three years of Target Signatures research and software development which has
gener&aed the Air Force's sensor system analysis version of the Target Sig- [J
naLure Data Bank, which was originally developed by the University of Michiganr
under sponsorship of the Air Force Avionics Laboratory.

Cooperation of the Navy project office staff, the staff at AVRS, and mem-
bers of those organizations cited in Table 1, "Data Sources," is hereby grate-
fully acknowledged. Gathering of many types of data from many diverse sources E[
was performed by James E. Hawkins, Junior Research Engineer. Development
of special graphical computer programs to manipulate data and generate charts
on Calcomp plotters was performed by Harold P. Zimmerman, Scientific Hi!
Programmer. The basic concepts of target signature analysis, data pre-
sentation formats, mathematical computation equations and the radiation
physics were developed by Patrick D. Fligor, Principal Research Engineer. I
Other key personnel of Technology Incorporated engaged in this research were
Miss Virginia L. Croft and Messrs. Arturo V. Serrano, Ronald G. Darner,

John W. Kavanaugh, and William A. Lloyd.
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ABSTRACT

To define the factors whereby Naval ships may detect, recognize, and
identify military targets during nigmt orerations at sea, the reported research
first assembled all available data desc,-ibing the electromagnetic character-
istics of each material comprising the target and background scene. Targets
included ships, airplanes, and shore installations; and backgrounds included
sea water, the sky, and shore materials. The scope of the study included theif wavelength range from 0. 2 to 14. 0 micrometers, the world's temperate and
tropical zones, and clear atmosphere conditions. After the principal illumi-
nation sources proved to be the moon, stars, nightglow, and tropospheric
thermal radiation, the radiation of each was quantified into absolute values
of radiometric units such as spectral irradiance in watts per square rmieter,
and the total spectral energy of each on the earth's surface was calculated

Ifor horizontal and vertical surfaces. After the emittance and reflectance
data for the most important target and background materials were collected,
they were computer-standardized and -processed to yield Calcomp plots of
reflectance and emittance versus wavelength. The results presented in this
report serve as the first complete set of such data in one document. In addi-
tion, the Bibliography presents a computer tabulation of 639 documents per-
tinent to this study.
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1. Statement of the Problem t

The goal of the research reported here was to define the factors wherebyNaval ships may detect, recognize, and identify military targets during night
operations at sea. The scope prescribed for this study included the wavelength

1range from 0. . to 14. 0 micrometers, the temperate and tropical zones of the
world, and clear atmosphere conditions,, but excluded countermeasure and
camouflage factors. Existing published data were to be compiled and analyzed,
and a bibliography of appropriate data sources was to be assembled.

2. Basic Approach

2. 1 General

At the outset this study sought to assemble data describing Lhe electro-
magnetic radiation characteristics of each material comprising the target and
background scene. Targets are ships, airplanes, and shore installations; arid
backgrounds are sea water, the sky, and shore materials.

H ~For the wavelength range from 0. 2 to about Z U~m, the primary source of

target information is the incident radiation reflected by target and background
materials. And for wavelengths greater than 2 4m, the primary source of such
information is the energy emitted by scene materials.

These information sou-ces require several types of knowledge to predict
the radiation levels erntering the aperture of a sensor system. The target
reflects spectral energy at short wavelengths and emits such energy at longer
wavelengths. Consequently, this study assembled data which would describe
each phenomenon across the spectrum considered. The atmosphere is a
selective absorber of radiation across the given spectral range. In addition,
the absorbing characteristics change with variations in the zenith angle. There
are many energy sources to consider at night: nightglow, starlight, tropo-
spheric thermal emission, moonlight, and others. To calculate the radiance
entering the aperture, the best presently available data Qebcribing each phe-
nomenon wer( assembled and then appropriate calculation techniques were
developed to analyze all this data in one compatible system.

Essentially, the data sought were the factors affecting detection, recog-
nition, and identification. To derive the data, a method was developed which L

would be useful throughout the spectrum and which wo'id not impose limitationson the types of sensors analyzed. The study also intended to present the result-

ant techniques so that the user of this report could apply them to the parameters
of any system to determine whether the signals entering the given system would
be useful in detection, recognition, and identification.

After all available data were evaluated, the valid data were extracted,
U standardized by many different conversions, processed in formats convenient

.• *
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for analysis, and categorized according to the standardizing and processing so
that the reader could determine the applicability of the data for his own purposes.

2.2 Data SourcesI- All known sources for classified and uncl assified data were contacted. 1

Thece sources included libraries for published. literature as well as govern-
ment, university, and industrial organizati.ons for any type of data they could
"prcvide. The organizations listed in Table I were contacted to request data. A

Although surprisingly few could offer eubstantial data, and many likely sources
had none, sufficient daia were eventually acquired to permit analyzing the spec-
t:ral factors affecting naval night sensing. As a result, a library of 639 docu-
ments was assembled, as listed in the bibliography.

2.3 User Assumption

In the preparation of the data for this report, it was assumed that the
user would be familiar with the basic methods dealing with electromagnetic
radiation in the 0. 2 to 14. 0 zr' range of the spectrum. Ih any event, these
methods can be found in the sources cited as references. In addition, L. M.
Biberman of the Institute for Defense Analysis has published through the years [
a series of reports (References I through 7) which provide insight into the
problkans of analyzing this part of the spectrum in consistent quantitative
radiometric units.

3. General Description of the Sensing Situation L
The sensor to be analyzed is a ship- or airplane-mounted device which

operates over the sea at night with no illuminator. With clear sky conditions
assui•ied and the entire spectrum from 0. 2 to 14.0 4m considered, image
intensifier wavelengths near 1 ýim are stressed primarily. Targets could be
ships, airplanes, or shore installations viewed against expected backgrounds. ,

This study primarily emphasized the generation of data which would

realistically describe real-world constituents of the given scene: ships and
aircraft, the sca and sky, and land materials near the shore. Additional
special date. was required to describe the energy sources at night and the
atmospheric effects.

The function of the sensor systema is to convert electromagnetic energy
into a display image for human observation. If the displayed information has
the proper contrast and resolution of detail, the observer can detect, recognize,
or identify the target among the background.

Data from this report can be used te describe the input signals entering 1_
the aperture of the sensor system. Givcn the signal processing parameters of
a sensor system along with this data, the reader can determine what the sys-
tem output will be for this input from realistic target scenes.
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TABLE 1 1

Organizations Contacted for Basic Data

Air Force Avionics Laboratory Naval Ordnance Test Station
Wright-Patterson Air Force Base, Ohio China Lake, California
Attn: AVRS Attn: Mr. Peter Leet, Detection

Branch

Clearinghouse for Federal Scientific
a nd Technical Infirmation

Springfield, Virginia 22151 Naval Scientific and Technical
Attn: Dept. A Intelligence Center

Washington, D.C.
Attn: Mr. Synder, Code 3e

Defense Documentation Center
bCameron StationAlextadria, Virginia 22314 Naval Scientific and Technical

Intelligence CenterWashington, D.C.
ENterowitz, Leon, Dr., Consultant Attn: Mr. Nelson, Code 2415616 Bloomfield Dri.

Alexandria, Virginia 12231W

Foreign Technology Division Naval Ship Research and Development

U.S. Air Force Center oSWright-Patterson Air Force Base, Ohio Annapolis, Maryland

Attn: Lt. DiLorenzo Attn: Mr. ael Greenberg

Honeywelt Cporation Remote Area Conflict Information
HopkIJ Minnesota Center
Attn: Mr. Paul Kruse Battelle Memorial Institute

Columbus, Ohio
Attn: Mr. :Ales Purdy

Infrared Countermeasure BrPnchNaval Ordnancq Test Station Target Signature AnAlysis Center

China Laket California Willow-Run Laboratories
Uttn: Mr. Geofge Linsteadt, Code M0hi University of Michngans

SAnn Arbor, iichigcn
SGAttn: Mrs. Diane Eard.ng

Institute for Defense AnalysisArmy-Navy Drive
Washington. D.C.

E Attn: Mr. L. Biberman U.S. Army Natich LaboratoriesNatich, Massachusetts

Attn: Mr. Alvin C. Ramsea
[ IR Background and Atmkospheric Physics

Specialty Group U.S. Army Night Vision Laboratory
W IRIA Data Center Fort Belvoir, Virginia

University of Michigan Attn: Mr. John Johnson
Ann Arbor, Michian

rAttn: Dr. S. Harris, Jr., Chairman
Na FU.S. Naval Reserve Training Center,ý Gettysburg Road
IRIA Data Center Dayton, Ohio

University of Michigan Attn: Lt. Comdr. WestallU Ann Arbor, Michigan
Attn: Miss Mildred Denecke, Manager

S•U.S. Naval Research Laboratories
Kitt Peak Naval Observatory Washington', D.C.
950 N. Cherry Avenue Attn: Dr. Henry Shenker

S~Tucson, Arizona

Attn: Dr. Joseph W. ChamberlainN Liin Office

UL.iv iasnOfc

Wright-Patterson Air Forca Base. Ohio
:|[INational Aeronautics and Space Attn: Condr.

. Administration
SP.O. Box 33.• College Park, Maryland 20740 •4th Naval District
Attn: Scientific and Technical Philadelphia, Pennsylvania

Information Facility Attn: Lt. Comdr. Parks, Code 32

Naval Civil Engineering Laboratory 4th Naval District
-Naval Facilities Engineering Command Philadelphia. Pennsylvanir
•aPort Hueneme, California Attn: Lt. Comdr. Fugate,

Attn: Dr. Haynes Intelligence Office
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4. Definition of Detiection, Recognition, an6 ientification

The differences between detection, recognition, and identification are
primarily a function of resolution, more detail being required for recognition
than detection and more for identification than recognition. For any of the
three operations, the sensor must receive a signal which is detectable because L
it is at a wavelength and level within the sensor's capability.

5. Detection

Detection may be defined as the. process of determining the presence of
something. For naval targets, this would be an unexpected ship or airplane. i
A ship, for example, would first be detected close to the horizon, depending
upon the detection range of the sensor and the existing weather and illumination
conditions. The important factor is how the radiation characteristics of the Li
ship would differ from those of the background.

Let us consider the case where a ship is very far away, but not obscured
by earth curvature. Assume that the ship subtends less than the entire volume
of one round resolution element, as illustrated in Figure 1.

Figure 1. Distant Ship in Center of Scene

As a sensor scans this scene, its detection of the ship depends upon the
sensitivity of its detection threshold, which is set according to the signal
levels generated by the background and any target within the fie)d of view.
Figure 2 shows two other examples of the ship in the background scene where

the scan-line elevation changes the background considerabi'.

5.1 Detection Thresholds

If a ship was not present, the scene could be all sky, all water, or any

combination of these within the scan geometry of the given sensor. To maxi-.

mize the probaoility of 4arget detection, the threshold is adjusted to minimize

false alarms and false dismissals. The sensor -nounting and field-.of-view i

4Wfalsealarm

S4 " . ,- -



define the vertical limits of the scan. The radiation characteristics of both
sky and sea change with sensor elevation angle. A larger range of elevation

U angles not exceeding the background threshold requires widening the tolerance
band encompassing the detection threshold levels. AMI the above factors vary
"with wavelength. -The optimai selection of detection thresholds should be madeI? easier and more quantitative by using the data and techniques reported in this
document.

LU

! jja. scanner high b. scanner low

Figure 2. Distant Ship with Scanner High and Low

5.2 Signal Chne sScan Position

Assume the scan raster is such that the single resolution element scans

from top to bottom. From the top of the scan to slightly above the horizon, it

sees the night sky. Next it views the top of a ship mast and then sees a scene

similar to that in Figure 2a. Thereafter, it views in order the configuration in

Figure 1, the scene in Figure 2b, and finally all water. As this scan progresses,

the detection Will be governed by a measure of the relative output of the sensor
whei the ship is present and when it is not. This procedure is somewhat anal-
ogous to the study of signal-plus-noise to noise ratios in detection theory. How-
ever, we are here concerned with the ratios for ship plus background versus

background alone (see Figure 3).

The sensor could detect the ship the instant the top of the mast enters the
resolution element if the mast generated a large enough signal change. If it
did, the output display would appear as if the endire cell were filled with a
target, since this element offers the finest resolution of the system. Further
scanning would continue to indicate a target until its signal fell below the
detection threshold. Of course, there are several sensor systems whose
detection procesces vary: Some systems contain multiple thresholds and
some are based upon principles of signal correlation. The threshold levels

can be varied by some systems based upon time, position, or supplementary
sensor information such as area integration as utilized by automatic camera

II exposure controls.

11 ~5
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Figure 3. Diagram Describing Seasor Considerations
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5. 3 Electrical System Detection i
U A sensor system converts -)ptical energy to electrical energy, which is

amplified and then processed by a detector to generate a target signal. For a
given system, the process of amplification, noise sources and levels, detector1characteristics, and threshold levels must be specified. Given this information,
the sensor observer can identify the changes in detector output levels that elec•-
trically indicate the presence of a target. At the scene, the energy radiated
toward the detector may be expressed mathematically as follows:

LI 1 Ai Di ( )i (w/sr) (i)

u where
i = index of constituents in field of viewri i
Ai = area of ith scene boundary

SDi = directional radiation factor for ith
boundary' a orientation

I (NX)i = radiance of ith constituent material

U Then the deteztor electrical output would be

r4 T, - dX (W)()

where

S= steradians

L TX = transducing factor of detector system

T = atmospheric transmission between scene and sensor

If no ship is present, then the entire field-of-view is filled with background.

U In that case,

Aresolution element = Asky + Awater (3)

If a ship is present, then

JAresolution element = A'sky + A'water + Aship, A* _• A. (4)

U 7
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ST The data in this report is used as follows to analyze the detection process.

The power input, dH/,iA, to the sensor is calculated as a function of range for

each material on the basis of material area. The reader will supply the areas

for each scene constituent. Multiplying dH/dA by the scene material area andi
by the aperture size will yield the spectral power, PX, entering the aperture for
that scene constituent. After P) has been calculated for each constituent, the
P Is should be added to yield the total spectralpower entering the aperture,
PX, for the entire scene. Then this total should be combined with the system
response to calculate the electrical outputs.

The target will be detected when the electrical outputs exceed the detection
threshold. Several aspects of the radiation could cause the detection. If the i i
ship radiates much more or less. energy than the background, then the scene
area should be smaller to produce a threshold crossing. For convenience, this
relationship is plotted in Figure 4 where the radiance change for the sensor is
calculated for various parts of the area subtended by the target (A area) when L
the radiance change is known as the scanner leaves the br -kground and crosses
the target boundary. Changes in radiation (sometimes c- ed contrast) can be
caused by differences in reflectance, emittance, temperature, changes in
illumination, and changes in the sensitivity of the detector across the spectrum.
Weatlher changes can also vary the spectral pattern at the detector for the Li1
same scene.

5.4 Culation of Detection Range

Knowledge of the threshold characteristics and the spectral detectivity
(such as D*) will permit defining the sensor characteristics. To calculate the U
spectral power, P, the spectral irradiance for the target and background
materials may be used to define the power densities of these materials at the
sensor as a function of range and size. Properly combining the spectral
detectivity with the spectral power for each material will yield the two detector
output values for the target and background materials. The ratio of the two
values is calculated as U

AO= 0 Target 0' -Oackground (5) L0 Background

Li
If AO > 0. 0, the target radiates more power than the background. The detector
threshold at the base signal level of the background defines the signal increase
which the detector needs to electrically identify a target, A DET. it Figure 4,
AO values are plotted along the abscissa with A DET values on the ordinate.
The intersection of a given two values defines a A area, which is the minimum
portion of the resolution element which the target material must occupy to per-
mit detection. Given the size of a ship and the angles of the minimum reso-
lution element, a calculation based upon geometry will yield the range.

8
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i 5.S.5 Detection Rang~e Example

•,I 
. ...

____________

I 
IA

A P6 class torpedo boat, for example, presents approximately 270 square
feet of cross-sctional area when approaching the sensor. For the spectrum
used, assurne that the change in radiance affects the output by 1016. Then,

= 1.1 - 1.0=0.1 (6)

1.0

If the detector required a 5% change to identify a target, then from Figure 4
the A area equals 0. 5, or the ship should subtend one-half of the field-of-view
(where the entire field-of-view is 270 ft2 x 2 = 540 ft 2 ). Assuming that the
resolution is 1 milliradian in a circular pattern gives

4a 4

-6540 ft2  Li4(8
r s 4t0= x ="6. 86 x: 8 ()j

S~and [and rdet = 2.62 x 104  26,200 ft (9)

To see the P6 waterline on the horizon, the sensor should be approximately
16-1/2 feet above the water, as read from Figure 5.

If the P6 were being viewed from the side with a circular resolution
element, the detection range would be different. At the bow, which would be L
raised up when planing, one-half of the circle would be filled as shown in
Figure 6. In this illustration, the diameter of this circle is approximately U
28 feet with

area n 142 = 616 ft 2  (10)

(range 2 6 16 x4: = 7.84 x 108 ft2  (11)

and
rangedet = 28, 000 ft (12)

From Figure 5, the sensor should be 18 feeA 10 inches above the water. [I
Zit

t I
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6. Recognition

An observer recognizes a target after he has detected it. Recognition
may be defined as the perception of an object type with characteristics pre-
viously known. At sea, recognition would constitute the perception that a
detected object, for example, is a ship. Alternative recognitions might be
a low-flying airplane, a cloud on the horizon, a peculiar wave pattern, or a ,
surfaced whale or other large fish, as shown in Figure 7. If these four alter-
natives can be eliminated, and detection is reliable, then the detected object
must be a ship. These alternatives might be eliminated by determining .he 1
spectral radiation pattern at the minimum detection range for the weakest
spectral sensitivity of a multiband sensor, regardless of the spatial reso- Ij
lution. In that case, I

Rangerecognition min (Range detectioni) (13) !ji It. K i
for K channels.

-= LI

Figure 7. Example of Possible Items Detected as Targets [

If a spectral test cannot eliminate the other possible targets, then the
shape and size of each object (as shown in Figure 7) must be considered for
a spatial test. Then the display pattern of each object should be calculated
for each expected target azimuth angle at the maximum detection range. If
the display patterns all differ, then the recognition and detection of an object
could be simultaneous. If two or mcre objects have the same display pattern, Li
then the resolution must be increased (by decreasing the range) until the pat-
tern of each object may be distinguished from those of other objects. In sum-
mary, the resolution required for recogLlition is a function of the shape and K
spectral radiation pattern of the set of possible targ-ts plus possible false alarms

7. Identification I
Identification may be defined as the process of establishing the sameness

of essential or uniquely grouped characteristics. For ship targets, identi-
fication would classify the ship, for example, as a P4, P6, P8, or Komar.

Both resolution and contrast muet be adequate. L

12
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7.1 Resolution Requirements

The resolution required for identification is a function of the character-.
istics of the objects comprising the set of possible targets. Basically, some-
thing akin to the profile or three views must be evaluated, To separate one
ship from another requires that some unique pattern be detectable. Suppose 4
the only difference between two candidates is a gun turret mounted on the bow.
Initially, the resolution -must be fine enough to permit the observer's deter-
mining the presence of the turret. In some instances, the turret definition

may be poor at the resolution required to identify it as being present. Identi-
fication, therefore, is a process similar to detection, except that the goal is
to find a unique identification cue once the target is detected. The resolution
must be such that this cue is discernible to the observer.

17. 2 Contrast Requirements

Assuming that the resolution is adequate for identification, the target

contrast with the background must be next considered. To discern some dif-
ference between the spatial characteristics of a target, the observer must
have some minimum contrast between the target and the background. SinceU[ the background within the scene can change, we must carefully consider the
contrast at all the points along the boundary between target and background.
Although the contrast could be inadequate at certain boundary points with no
loss of information, it must be adequate at the critical boundary locations,
such as those i round the gun turret in the preceding example. The scan pat-
tern and the shape of the resolution cell will affect the definition of where the
contrast must be high and of how much contrast must exist for detesction of
the identifying cue. Each target-background combination must be evaluated
from all aopect angles %ith typical scan geometries to arrive at statistically
acceptable performance for the tactical approach angles in a given surveil-
lance situation.

I Fundamentally, the signal to be detected is the product of the energy
difference per unit area of the cue feature, the cue feature subtended area,
and the directional radiation coefficient. The energy difference in this product j
is related to contrast. This product will modulate the existing signal without
the cue. the difference being the signal plus the background. Then the target
will be idenlified if the difference between the signal plus the background and
the background alone is great enough to cross the human or machine detection
threshold. Figure 4 shows the quantitative definition of these relationships.

8. Electromagnetic Radiation Effects

Many physical effects govern the signals entering a sensor aperture.
These signals are basically electromagnetic energy in the form of spectral
irradiance patterns. These patterns are caused by any mechanism which can[ generate energy within the 0. 2 to 14. 0 ýIm wavelength range. Radiation starts

13
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with basic sources such as thM sun or other heat sources and is modified by i
every mater.At that occupies the path between the energy source and the

sensor aperture.

For night viewing, the principal energy sources are the moon, stars,
nightglow, and tropospheric thermal radiation. In this wavelength range the

primary constituents of the atmosphere which ;ifect transmission are water
vapor, carbon dioxide, ozone, and scattering particles. The scene materials

reflect incident energy and emit energy caused by the molecular motion due

to t~he temperatare of these materials.

8. 1 Spectral Effects S•i

Each of the above phenomena varies with the radiation wavelength.
Also the existing physical parameters for the radiation paths will modify
the patterns. Figure 8, a plot reproduced from Reference 8, p. 16-2,
shows many interesting aspects of radiation. Note that the abscissa vari-

ab]le is wave'.ength, and the ordinate is irradiance. The 59000 K blackbody
curve illustrates the characteristic shape of all blackbody curves. Note
that the curve for the sun's irradiance in not exactly a shape characteristic

of a blackbody. The difference between the sun's irradiance at the top of

the atmosphere and at sea level is caused by the selective atmcspheric
absorption of ene-gy at different wavelengths.

Examples of the atmosphere's selective absorption are shown in Fig-
ure 9, which is from p. 10-3 of Reference 8. These curves indicate the
spectral effects of atmospheric transmission.

The real-world variability poses the greatest difficulty in character-

izing these phenomena. Any of the constitucnts can vary considerably over
the spans of time and place that must be analyzed. Therefore, the study
must lea) with trends which can be calc--lated from model conditions such
as those given in the US Standard Atmospa-ere (References 9, 10). Other
effects must also be modeled by using reasonable estimates for average
conditions. Since the reflectance of each material will vary somewhat,

average values must be calculated to represent the nominal reflectance of
each material.

8.2 Energy Sources

Energy sources for night sensing include the moon, starlight, night-

glow, and tropospheric the'rmal heating. Figure 10 fronm Reference 11,
p. 35, •lNxs the spectral energy from the moon and various planets. Of

course, to be :,. factor, the moon or planet must be above the horizon and L
illuminating the given scene. Note that these curves are calculated and
represent the spectral irradiance outside the atmosphere, not that at the
earth' s surface.

14V
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Figure 10. Calculated Spectral Irradiance from Planets at the
I TeTop of the Atmosphere (Reference 11)

There are one billion visual stars, according to Russell, Dugan, and
Stewart in Reference 12. On page 622, they list the numbers for the magni-Ltude of each star, as reproduced in Table 2. On page 626, these authors
state that more than 99% of the stars fall into six spectral classes. Their
distribution is shown in Table 3, which was taker. from Reference 12, p. 626.II The spectral irradiance for various population~ levels of stars above the at-
mosphere is shown in Figure 11, which was extracted from Reference 13.

II The tropospheric thermal r-aciation show'n in Figure i2 is based on
measurements by Fredrickson, Gushing, and Palo and by Bell, at al, asII given in Reference 14, p. 25. This date. is taken at the earth's surface.
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TABLE 2

Number of Stars Brighter Than a Gien Magnitude (Reference 12)

Magritude - Nunber of Stars Magnitude Number of Stars
Limit t graphic Visual Limit Photographic Visual

4.0 360 530 13.0 2, 7Z0, 000 5, 700,000 Li
5.0 1,030 1,620 14.0 0" 500,000 13,800,000
6.0 2,940 4, ',IS 15.0 15,000,000 32,000,000
7.0 8,200. 14,300 16.0 33,000,000 71,000,000
8.0 22,800 41,000 17.0 70,000,000 150,000,000
9.0 62,000 1 7.,000 18.0 143,000,000 296,000O,000

10.0 166,000 324,000 19.0 275,000,000 560,000,000
11.0 431,000 870,000 20.0 505.000,000 1,000,000,000
12.0 1,100,000 2,270,000 21.0 890,000,000

TABLE 3

Percentage of Stars of the Various Spectral Classes (Reference 12)

B A F G K M
Visual Magnitud_ (BO to B5) (B8 Wo A3) (A5 to F2) (F5 to GO) G5 to X2) .(K5 to MB)

Brighter
than 2. 24 28 28 7 10 15 12

2. 25 to 3.24 25 19 10 12 22 12
3.25 to 4.24 16 2z 7 12 35 8
4.25 to 5.24 9 27 I 2 30 10
5.25 to 6.24 5 38 13 10 28 6
6.25 to -. 24 4 30 12 14 33 7
7.25 to 8.24 2 26 11 16 37 8 --

8.25 to 9.24 1 27 10 21 34 7
Below 9.25 1 33 8 25 29 4

All together 29 9 z1 33 6

18
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The nightglow at the earth's surface is shown in Figures 13 and 14 . 1
(Reference 14). Note that tle ordinate is the spectral brightness at the zenith.

The objects in the scene can be a 8oL., •.e of energy. Any object warmer
than absolute zero will radiate ernergy as a black or gray body at any wave-
length. Spectral emittance describes the capability of the body to radiate I
energy. Figure IS from Reference 8, shows.the spectral radiance for a
blackbody as a function of temperature.AI
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[ Figure 13. Spectral Radiance of Nightglow at the Zenith at the Surface

for 0. 4 to 1. 1 gm (Reference 14)
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8. 3 Atmospheric Effects I
The primary causes of atmospheric attenuation from 0. 2 to 14. 0 Urn are

water vapor, carbon dioxide, ozone, and particle scattering. Hudson (Ref-
erence 15) has reproduced and extended tables by Passman and Larmore of
the Rand Corporation (Reference 16). These tables permit calculating the
spectral transmittance of the atmosphere at sea level with a technique to ad-
just for altitude and concentrations of CO0 and H 2 0. Ozone absorption at the
9.4 to 9. 8 Wm band is calculated by using the data on p. 159 3f Reference 15,
Ozone absorption at shorter wavelengths is calculated by using the tables of
Elterman (Reference 17). The Elterman tables also include methods to cal-
culate the effects of particle scattering, but data is provided to calculate

effects only at discrete wavelengths from 0.27 to 4. 0 4r,

8.4 Scene Effects

Energy starts at its source and passes through the atmosphere being
selectively spectrally attenuated. It illuminates the scene where it is spec-
trally reflected. Energy generated within the scene is spectrally emitted.

U 8.4.1 Reflectance

Reflectance of materials can vary from 0 to 1, depending upon the
proportion of incident energy which is reflected. For any material, the
reflectance will vary significantly with wavelength from 0. 2 to 14.0 4 m. In
general, no material has the same reflectance over this range of wavelengths.
Reflectance changes with the angles of the incident light and the observer's
sensor, Born and Wolf (Reference 18, p. 182) define the conditions necessary
for isotropic radiation. If a plane surface is an isotropic radiator, it is said
to be lambertian, or diffuse. Very few measurements of the angular effects
exist; therefore, diffuse assumptions are frequently made.

- 8.4. 2 Emittance

Most data are first measured as spectral reflectance and are con-
U verted to emittance by assuming opacity. For an opaque body (T = 0), we have

(13)

This formula was used to calculate the data appearing in Reference 19. Emit-
tance is important rnly beyond about 2 Um because normal objects are at
ambient temperature and blackbody radiation below 2 urn at ambient tern-
perature is less than other sources of reflected energy.

i I 9. Radiation Calculation Techniques

I Recall that the goal is to determine the factors of detection, recognition,

i23
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and identification. Basically, the sequence begins by determining the bound-
aries of the scene viewed by the sensor. Next the spectral irradiance entering
the aperture from within each boundary defines the power entering th.. sensing
transducer wher. one resolution element ia focused (or scanned) on the material.

To calculate this radiation as a function of wavelength requires first deter-
mining the incident energy illuminating the scene. The data presented later L-
in this report will define the incident energy from nightglow, starlight, the
troposphere, and the moon. This energy is summed appropriately by con-
sidering the angle of the illuminated surface (note that the data is presented
for vertical and horizontal surfaces). Note that the .noon may not be present,
or its elevatir angle may vary daring the observation period, Next this input

I!
energy is convolved with the spectral reflectance for each surface material-
to define the energy reflected toward the sensor, considering whether the sur-
face is lambertian or not.

Each scene consti~rvnt is also considered as a blackbody source at its
temperature. Radiance is r'ultiplied by spectral emittance to determine emitted I
energy. Reflected energy kv added to emitted energy to determine all energy t

leaving the scene. This energy is selectively spectrally attenuated between
the scene and the sensor by the atmosphere. Finally, the attenuated values [j
represent the ener.gy entering the sensor aperture.

9. I Atmospheric Transmission iJ

The spectral transmission of the atmosphere is elfected by scattering
particles, ozone, water vapor, and carbon dioxide. Each of these factors [J
varies with altitude. Data for horizontal transmission at sea level have been
mrn sured by Yates and Taylor (see Reference 20). For like data at elevated
angles, the tabular data of Passman and Larmore (Reference 16) are used, aa HI
extended in Hudson (Reference 15), with the Elterman technique (Reference
17) added. i

9. 1. 1 Horizontal Sea Level Transmission

The Yates and Taylor data have been digitized and interpolated.
Curves of atmospheric transmission at se& level versus range from sensor
to target are presented in Figures 16 through 29. The data for these curves
were measured at ranges of 5. 5 km and 16. 25 km, and the intermediate values L
were calculated by using interpolation. Because of their bulk, these figures

and all other computer-generated curves (Calcomp plots) appear after the text
of the report proper.

These curves were computed and plotted for selected wavelengths
on the assumption that the transmiscion loss at a given range is due to the U
attenuation phenomenon following the pattern of

or e-U(l) (15) [
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Swhere T is the transmission over a range t. with an attenuation coefficient
a(k) depending on a wavelength X. With this assumption, the extrapolation offl the test data on range was performed by defining the extinction coefficient as

Loge(TX)
•(X) = Log(16)

These extinction coefficients were generated for each of the wavelengths usedj to define the spectral curve and then used with Equation (15) at the appropriate
ranges to interpolate othec curves.

The interpolation of the 5. 5 km and 16. 25 km test data yields dif-
ferent results when one curve is used to predict the transmission at the range
of the other curve due to the differences in temperature and the quantity of
precipitable water in the optical path. The one advantage of the Yates and
Taylor data as a prediction for tea level transmission is its incluion of all
attenuation factors, even though they may not be separable or individually
predictable.

The 5. 5 km test data was mer"•ured on 19 April 1956 at 380F, 66%o
relative humidity, and 2.2cm water i .e path with a reference point of 40%
transmission at 0. 55 t±m. The 16. 25 km data was measured on the same day
with 53'F, 41% relative humidity, 6. 5 to 6. 9 cm water in the path, and a 29%
transmission at 0. 55 j~m as reference. The tests were conducted over the
Chesapeake Bay at the Chesapeake Bay Annex of the U. S. Naval Research
Laboratories.

The techniques described by Hudson (Reference 15) and Elterman
(Reference 17) could also be used to generate similar curves. Such combined
curves may be preferred since the Yate= and Taylor measurements repre-
sent only one distinct set of conditions.

S9.1.2 Elevated Line-of-Sight Transmiscion to Top of Atmosphere

I The calculation of the energy irradiating the scene required know-
ing the atmospheric transmission from sea level to the top of the atmosphere
for 10 zenith angleb, see Section 9. 2. After each factor was calculated sepa-Ii rately, the overall transmission was evaluated as

'T X = TX scattering 'XH 2 0 •TC2 * T X0 3  (17)

I 9.1.2.1 Scattering Effects

Elterman (Reference 17) defined a particle concentration which,
JII reportedly, matches the US Standard Atmosphere for typical conditions (25 km

:} ,.
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visible range). This reference contains a set of tables which permit deter-
-tuning the transmission of the atmosphere. The Rayleigh, Mie, and ozone
effects from 0. 27 to 4. 0 "m are treated in this reference. Except for one
change, the techniques of Elterman wer- used to calculate the scattering to
the top of the atmosphere. Elterman's equation for transmissio;- at an arngle is

To-h = e'-extfh) sec ( (18)

where 0 is the zenith angle. This implies a flat earth. The ratios of distance I i
traveled to 50 km (Elterman's maximum height) for a curved earth were cal-
,'ulated in this study for the angles listed in Table 4.

TAPBLE 4 L
klevation Angle Versus Ratio of Line-of-Sight Distance Tr• aveled to

the Top of a Cr'rved Earth with a 50 km Atmosphere from the Surface L
Angle Distarce Ratio Angle Distance Ratio

00 1.0 800 5. 176
2O' 1. 064 85" 8.367
"400 i. 302 880 12.155
60" 1.977 900 15.995 L.i
700 2.843

After these data were plottad, vabies for the ten angles represent- ._
ing the ten s0e-, segments were read graphically. The ten values were used to
replace the sec 0 term of Equation (18). Realti are plotted as Figure 30. To
extend these curves, the values for wavelengths of 1. 06, 2. 17, and 4. 0 Um
were graphed on a semilý)g plc.t. as shown in Figure 31. Since these plots
made reasonably straight lines in a logical pattern, they were extrapolated
to 14. 0 Lm. Then after the data were plotted on linear scale graphs as T L
versus X, the curves were digitized. The ten curves of T rersus X for each
zenith angle are presented in Figures 3Z through 41. 1

it

9. 1.2.2 Ozone Effects

Elterman' s tabl.es include ozone effects below 4.0 um. However,
the above extrapolation of his data fails to include the ozone absorption at
longer wavelengths, To include this absorption, the, r-%-ve for ozone absorp. K
tion shown in Figur, 9 was scaled by the Amplitudes given by Hu,. son (Ref- .
erence 15, p. 128) for the 4.6 4m absorption peak for 4. 03 atm-cm ,of ozone,
which is the total arnount in the US Standard Atmoapher-%. For zeni••i: angles
greater thar. zero, the amour', of ozone in the path increases for a curved
earth, as B'hown in Figure 42. Tam- cilculated ozone transmission effects
for the ten sky segments are plotted i- Figures 43 chr.ugh 52.
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9. 1. 2. 3 Water VaR.,r Effects

The, altitqde corrections of Hudson (Reference 15) were used to
correct the water vapor contents of the US Standard Atmosphere, see p. 3-37
of the Handbook of Geophysics (Reference 8). This water vapor content is
plotted in Figure 53. Again a curved ear-th calculation was used to adjust
for the water vapar that a ray passes through at various zenith angles. The
transmission effecte du to water vapor are plotted in Figures 54 through 63.

9. 1. 2.4 Carbon Dioxide Effects

Hudson's altitude corrections were also applied to the Passman
and Larmore tables for the CO 2 transmission effects. The equivalent path

length of 0O2 for curved-earth zenith angles is plotted in Figure 64. The
carbon dioxide transmission effects for the ten sky segments are plotted in
Figures 65 through 7C-i.

9. 1. 3 US Standard Atmosphere Tranbmission vs Elevation Angle

The above curves for thc- four factors affecting transmnisf ion were .
combined to calculate tranamissior, versus zenith angle by using the equation

atmos Tscattering x H x x 03 (09 L1
Ii

For ten sky segr..ents, the spectral transmission is shown in Figures 75 Li
through 84.

9. 2 Energy Illuminating the Scene

e entire sky, across all zenith angles, can be a source of energy
caused by stars, r,'ghtglow, and tropospheric thermal effects. To make a
reasonably short approu06.iate calculation of the energy effects, the sky was
considered to be a hemisphere above a flat horizontal surface. Zenith angles
for every one-tenth of the sky were calculated by using the methods of p. 07
in Reference Z1, To define every one-tenth of the sky, tf-e selected angles
from the zenith were 25. 9", 36. 8', 45. 6, 53. 1, 60. 00, 66,40, 72. 5", 78. r•u
84, 3V, and 90". To calculate the average attenuation du. to each effect, a
zenith angle representing the center of area of each of these areas was used
foi ,ach 0. 05 increment of the sky. These angles were 18. 10, 31. 7, 41.4",
49. 5", 56. 6, 63. 20, 69. 5*, 75. 50, 81.4e, and 87. 20. At each of these angles,
the radiance of one-tenth of the sky was calculated at the scene for flat hori-
zor-tal and vertical surfaces. Note that a vertical suriace is -luuminated by
onry one-half of the sky.
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1 9. 2. 1 Starlight

The distribution of stars by spectral class, as shown in Table 3,
was used to generate the spectrai characteristics of the entire sky, consid-
ering that their equivalent irradiance is stated to be 35. 8 stars of zero

11 magnitude per steradian (assuming uniform distribution), see p. 33 of Ref- 7
erence 11. Multiplying 35.8 by 0.62832 sr/0. 1 sky yields the spectral
irradiance above the atmosphere for each one-tenth of the sl,.y. Also the
relative occur'rence of each spectral class is considered. See Figure 85

UI for the spectral stellar irradiance for 0. 1 of the sky above the atmosphere.
Next the atmospheric transmission was considered for each one-tenth of the
sky. Finally, the data was summed up for the total energy reaching a hori-
zontal and vertical surface. The resultant thirty-two curves are presented
in Figures 86 through 117. Of these figures, the first ten represent the
starlight at the scene for each one-tenth of the sky; the second ten represent
the starlight energy illuminating a horizontal surface for each one-tenth of
the sky; and the third set of ten represent the starlight illumination of a flat
vertical surface for each one-tenth of the sky. The thirty-first figure repre-
sents the total energy illuminating a horizontal surface, and the thirty-second
represents the total energy at a vertical surface. The first 30 component
curves are presented to permit the reader's calcukrting other situations as
needed.

U 9.2.2 Nightglow

Reference 22 describes the constituents causing nightglow. ToL define the nightglow requires basically the conversion of energy from one
form to another in an earth-concentric volume between the altitudes of 80
and 120 km. Accordingly, the volume for a curved earth band between these
two altitudes was calculated for each one-tenth of the sky. Table 5 presents
the results.

Il TABLE 5

Volume BetweeiL 80 and 120 km Altitude Boundaries for a Curved Earth

rU II Sky Segment Volume (1 -,-3) Sky Segment Volume (kin3)

1 294,894 6 2,490,109
2 401,560 7 4,870,881
3 591,727 8 11,473,274
4 877, 921 9 32,333,:)66

5 1,429,150 10 106,197,322

Figures 13 and 14 represent the spectral radiance at the earth's
surface caused by nightglow at the zenith. After this radiance was scaled
to the 0. 1 sky elements, ýhe volume effect was calculated directly for each
segment (actually twice the volume was calculated to give twice the radiance).
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These figures were attenuated by the atmosphere, and calculations were made
for horizontal and vertical surfaces. The resultant 32 curves, similar to

-' those for starlight, appear in Figures 118 through 149.

9. 2. 3 Tropospheric Thermal Energy,

Figure 12 illustrates some measured spectral radiance caused by Li
tropospheric thermal energy radiation. Bell, Eisner, Young, and Oetjen
(see Reference 23) indicate that this effect is related to the ground ambient
temperature. To calculate this effect, the emittance of the sky was estimated -
as

where

T T H 2 0 T"CO2 "T03" Trscattering (21) L

and

T -scattering 
(22)

This emittance was then multiplied by the blackbody radiation at the ambient
temperature of 68*F. The resultant 32 curves, again similar to those for

the preceding two sets, are presented in Figures 150 through 181. L

9.2.4 Moonlight Li
The full moon can be a significant energy source if the moon is

fairly high above the horizon. However, there are few times and places
- where this occurs. Moreover, the moon's reflected sunlight diminishes dur-

ing the lunar month as the moon phase changes. Accordingly, the data of
Figixre 10 were used to calculate spectral irradiance for the full moon, as
attenuated by the atmosphere, for each of the ten angles listed in Section 9. 2. L
Reflected plus emitted irradiance is shown in Figure 182. With appropriate
scaiing for horizontkl or vertical surface illumination, Figures 183 through
212 present the curves for these ten angles. Since the moon is a point source, Li
summation curves are not appropriate. Partial moon radiation can be scaled
from these data.

9. Z. 5 Other Sources

Other sources of illumination, such as aurorae, zodiacal light, and
noctilucent clouds are present at certain locations. However, these sourres
were not included in this report because they do not provide reliable illumi-

nation at L-be temperate regions of the earth. The night sensing literature

implies that the energy sources enumerated above constitute the major and
significant sources of illumination. H
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1 10. Scene Constituents

The number of possible scenes viewed by a remote sensing device is

nearly limitless; each scene, however, has in common basic characteristics,

including target and background constituents.iI
10.1 TargetetsH

U The analysis of the target part of each scene must include the operational

mode of the remote sensing device, that is, its uee in. an air-to-surface, sur-

face-to-air, or surface-to-surface configu:ration. The targets can be broken

dcwn into three basic types: airborne vehicles, sea surface vessels, and

fixed and mobile shore targets.

S10.1.1 Surface Ship.

Surface vessels in this report include all the known military naval

Lvessels, both ships and boats, under 120 fo.et in length. Included in this coverage

are the vessel types of more than 100 countires, including such categories as

fast patrol boats, torpedo/missile boats, riverine patrol craft, minelayers,Itnincsweepers, Landing crait, diving tenders, military harbor tugs, some SEA
paramilitary vessels such as South Vietnam fishing vessels converted to shore

patrol craft, and some miscellarneous craft. The naval vessels include those of

Lboth the regular navy and the coast guard, or the equivalent organization, in

the respective countries. To classify the smaller vesaels of some co-ntries
is difficult since some such vessels have been built by one country and then

Laltered by another to serve a different function. For example, the Cuban Navy

converted a U.S. Higgins motor torpedo boat to an air-sea rescue vessel by

modifying the above-deck construction. The problem in classif,.-ation, there-

Sfore, lies in choosing batween the using country's description of the vessel and

its intended mission functions on the one hand, and the original intended use by

the country which designed and built the equipment on the other hand. Numerous

other examples could be cited for vessels that are used in any of the categories
listed above.

U 10.1.1.1 Vessels by Nationality and Dimension

Table 6, Naval and Merchant Strengths, lists the different types of

ships, regardless of size and shape, for the 55 countries with the largest fleets.

This table is included solely to permit comparing the vessel types by country

with those vessels under 120 feet in length as listed in later tables. Figure 213

shows the hull shapes (side profiles) for fourteen hull types, including one un-

known to represent hulls whose shapes could not be determined by photos or

drawings. These basic hull types were the result of analyzing the 7320 vessels,

120 feet or less in length, makung up the world's naval vessels. Hull type No. 2

(unknown shape) is included only to show that there are 22b5 vessels in addition

l Uto the 5065 vessels whose hull shapes are known.
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Hull Type Number of •. essels Hull Shape

1 3996

U 2 2255 Unknown

3 500*

4 268

5 134

6 94

7 14

8 1 a p

9 12

11 8

- •12 8 -

1 13 7
14 1

STotal 7320

Approximate (South Vietnam fishing vessels used in coastal patrol missions)

ill
Figure 213. Number of Small Surface Vessel& by Hull Shape (side profile)
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Table 7 lists the number of vessels by hull shape versus length.
Table 8 gives these same vessels by hull shape versus width (beam). And
Table 9 lists the vessels by hull shape versus height (from waterline to top
of superstructure, masts and antennas not included). The comparison of the
7320 vessels under 120 feet in length with the 13, 685 naval vessels listed in
Table 6 indicates that about 53. 5% of the military naval vessels are 120 feet
or less in length. The total approximate number of such merchant and mili-
tary vessels is 46, 223, as listed in Table 6. If coastal pleasure craft and
fishing vessels are excluded, the odds that a sighted ship is a naval vessel
under 120 feet in lenqrth is one in every 6. 67 sightings. Of course, local
conditions may either raise or lower these odds Certainly the odds increase
censiderably if pleasure craft and fishing vessels are included. These latter
craft could be used in paramilitary operations such as the smuggling of arms
and supplies to insurgents in guerrilla-type warfare. Table 10 lists by hull
type (see Figure 213) the number of naval vessels for 103 countriea. These
numbers include, but are not limited to, fast patrol boats, torpedo and mis-
sile boats, minesweepers and small minelayers, landing craft, diving tenders,
and small harbor tugs. This table is included to indicate the relative number
of naval vessels under 120 feet in length among the given countries. The
average dimen3iona for naval vessels under 120 feet in length are as follows:
length, 50 to 90 feet; width (beam), 16 to 22 feet; and height (from waterline
to top of superstructure, not including masts or anteinnas), 14 to 16 feet.

TABLE 7

Hull Type Versus Length
Hull Length (in feet)

Type 20-29 30-3S 40-49 50-59 60 69 70-19 80-89 90-99 100-109 110-120 Unk

1 S70 72 883 125 636 1218 147 184 159 1

2 18 43 164 104 118 137 56 91 72 110 1342

3 500

4 48 45 i8 1O 14Z 5

5 14 120

6 4 16 32 10 3z

7 13 1

8 13

9 2 10

t0 10

11 3 1 21 1

iz 6 1 1

13 6 1

14
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I TABLE 8

Hu�I-iull Type Versus Beam

Hul. Width (in feet)
Type 6-8 9-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24 24-26 26-Z8 28-30 10-32 32-34 Unk

1 1 598 837 108 714 39Z, 1037 z 74 3 1 229
ii

2 2255

3 S00

4 49 157 3 1 4 54

5 14 119 1

6 11 26 14 24 z 10 5 2

7 13 1

jj8 13

9 1 2 I 8

10 10

11 4 3

[j12 62

13 7

fl 14 1

TABLE 9

-f Hull Type Versus Height (Waterline to Too of Highest Structure on Deck
not Iticluding Tubular Masts or Antennat.)

Hull Heighth (in feet)
Type 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-Z 22-24 24-26 26-28 26-30 Unk

1 Z-72 338 166 566 416 964 Z31 268 62 a 4 0 0 707
- - 2255

3 500

, 4 69 z 120 1 4 is 57

L1 5 14 106 03 1

6 8 1: a 13 1; 4 4 19

7 14

8 13

9 2 10

10 10

II11 1 1 4 1 1

12 1 6 1

13 6 1El14
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TABLE 10

Number of Naval Vessels Under 120 Feet in Length
by Hull Class Per Country

Hull Class

Country 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total

Albania 16 12 6 34
Aigeria 12 V7 39
Argentina 22 6 28
Australia 26 9 35
Belgium 16 21 1 38
Brazil 2 2
B runei 1 1
Bulgaria 36 w50 w86
Burma 35 4 10 49
Cambodia 52 13 6 7i
Cameroon 4 4
-ranada 13 69 13 95
Ceylon 1.2 1 4 27
Chile 8 3 3 14
China, Nat. 85 44 30 159
China. Peoples' Z78 408 8 694
Columbia 8 Z8 3 39
Congo. Ropublic 11 i1
Costa Rica 3 3
Cuba 58 1Z 4. 74
Cyprus 6 10 16
Denmark Z3 Z8 14 Z 67
Dominican Republic 7 6 Z 156
Ecuador 8 1 9
Egypt 50 16 3 69
Eire 4 4
El Salvador Z 2
Ethopia 11 4 15Finland 28 ZO 1 6 55

France 21 96 117
Gaboon t 1 2

Germany - Fed. 28 67 * 13 1 !09
Germany - Peoples' 60 71 131
Ghana 8 8
Grea t Britain 56 118 15 4 1 1 195
Greece 4q 19 8 76
Guatemala 5 5
Guinea 14 !4
Guyana 4 4
Ha;ti 4 2 6
Honduras 3 3

Hungary Z3 23

Iceland 1 1 Z
India 9 18 27

Indonesia 8x 23 1 105
Iran 9 9 11 29

Iraq 12 2Z 34
13rael 14 3 17
Italy 71 30 4 155
Ivory Coast 4 4
Jamaica 3
Japan 167 215 6 2 13 1 404

Kenya 4 4
Korea-North 43 52 12 107
Korea -South
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TABLE 10 (concluded)

J Number of Naval Vessels Under 120 Feet in Length
by Hull Class Per Country

fl qHull Class (Contd)

Courtry 1 2 3 4 5 6 7 8 9 10 11 1Z 13 14 Total

Kuwait 8
Laos 4+ 4+
Lebanon 3 1 15

Liberia 4 + 4+

Libya 5 9 14

Malagasy 
---

Malaysia 31 2 1 34

itaruetanm 2 2

Mexico 2 6 8LJ Morocco I 1

Netherlands 22 32 54

New Zealand 12 2 14

Nicaragua 7+ 7+

Nigeriia 7 2 9
-horway 47 7 54

Pakistan 6 3 9

Panama 5 S
||Paraguay 6 6

L Peru 9 4 13

Philippines 18 25 43

Poland 50 48 98
Portugal Z4 64 88

Rumania 10 19+ 22 51
Saudi& Arabia 1 32 13

Senegal 3 3

Sierra Leone I I
SSingapore `7 `7

L Somalia 12 2 14
South Africa 10 1 it

South Arabia 3 3
SSpain I ZS 3 4 36

Sudan -m 4

Sweden 100 72 1 1 184
Syria 24 6+ 30+
Tanzania 4 4
Thailand 11 7 6 24

UL Togo 4 4

Trinidad & Tabago 2 2 4

Tunisia 12 IZ

Turkey 32 4 36
UU ruguay I I

U.S.A. 1396+ 122 62 42 1 10 2 6 1641+

U.S.S.R. 350+ 25+ 70 445+

Venezuela 8 4 12

Vietnam-North 39 48 87

Vietnam-South 129 91 500 727

Yugoslavia III+ + 1 14 1 127+
Zambia""1m1 3996 2255 500 263 134 94 14 13 12 10 8 8 7 1 7320+

Notw: The "+" after some figures denotes additional, but unknown. numbers; the U.S.S.R. figures
with this symbol may exceed 500.
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10. 1. 1.2 Ship Surface Materials and Coatings

Three basic materials are used in the construction of naval vessels:

steel, aluminum, and wood. Coatings for these basic materials may vary from

country to country, but generally the final coat is a shade of gray paint. How-
ever, some landing craft may be painted an olive drab with various spots of
several shades of green. Naval vessels are usually colored gray since it offers
the lowest overall contrast to the sea/air background in the visible part of the
spectrum in day/night observations. Figure 214 illustrates the spectral reflec-

* tance of a typica-i military naval paint in the spectral range from 0.3 to 14 Pm.

Based upon a 0. 3- to 2-.4m curve in the Air Force Target Signatures Library,
the curve in Figure 214 was extrapolated from 2 to 1411m according to infor-

mation given by Mel Greenberg, NSRDC (Naval Ship Research and Develop-
ment Center). Spectral emittance for this paint was calculated as I-p and is

plotted in Figure 215. Actual paint samples were limited to the data found in
Reference 33 which covers gray naval paints (see Figures 216 through 218) and
an olive green naval paint (see Figure 219). Since by U.S. military standards,
the )aints including subsurface coatings are applied to at least a 2. 5-mil thick-
ness, the paints are opaque in the 0. 2 to 14. 0 Um. region; therefore, the sub-
stratum has uo reflected energy. This condition should prevail for all well-

maintained naval vessels, but not necessarily for small SEA (Southeast Asia)

patrol craft that are converted fishing-type vessels. For example, South

Vietnam has numerous fishing vessels constructed principally of Sao (Hopea

odorata), a brownish wood which turns reddish brown with age: or Sen bobo

(Smorea hypochra), a yellowish wood which turns brownish when weathered
under marine conditions. Neither of these two woods has been measured

spectrally to our knowledge. For reference purposes only, three figures are

included to represent curves for wood: Figure 220 for a weathered fir board, L
Figure 221 for a redwood board, and Figure 222 for a sanded oak board. Al- L

though the aging of the last two woods is not known, their higher reflectance

in the 0.8 to 2.0 pm region indicates that they were much more recently cut

than the fir board. If this assumption is true for the Sao and Sen bobo woods

which are primarily used in South Vietnam patrol vessels and fishing boats,

then the more weathered vessels would have lower reflectances out to 2. 0 "m.

This assumption also includes the supposition that the patrol craft are un-

painted, as is the custom with tfie fishing vessels at that area. These fish-

ing vessels are usually removed from the water at least once a year to drive

out or kill woodworms by charring the hulls with burning bamboo. The caulk-

ing consists of ground bamboo and resin (primary), or shredded bamboo and

coconut husk mixed with resin. For most vessels between 8 and 15 meters,

the basic construction is a keelleas, hard chine planked hull. Other construc-

tions include the keel and rib type with round bilge and planked hull which was

introduced in 1960.

10. 1. 1. 3 Extrinsic Characteristics

Two extrinsic characteristics--exhaust and wake-are important

factors in detecting surface vessels. Three types of vessels cause these
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J wakes. The first, which includes by the far the most vessels, is the hull-
borne boat. The interaction of the wake with the wind waves will vary con-
siderably with the speed of the vessel; hull configuration; relative direction
of wind waves and swe'l to the direction of the vessel; and period, height,
and fetch of waves and swell. The second type, which is limited to fewer

i-i than 100 vessels, is the hydrofoil boat. Although the United StLteF vessels
u are primarily experiment;Al a&nd limited to about three, the U.S.S.R. and

the People's Republic of China together pcssess approximately 75 which are
used as fast patrol boats. When they are hydrofoil-borne, their wake will
be due little to foil, but much more to the propelling device (either conven-
tional screws on the struts of the hydrofoils or water-jet/propulsion motors).
The last type, which is irimited to fewer than 10 vessels, is the air-cushion
"air boats." Restricted to coastal, river, and swamp areas where the water
is relatively calm, the air boats move across the water on a cushion of air
approximately 4-feet thick. They are kept aloft by a lift fan and propelled
forward by an aft-mounted propeller. Although the wake of the air boat is
negligible, a heavy aerosol develops which either remains stationary ith
respect to the vessel or slowly moves around it because of the downward
lift fan. At faster speeds (up to 60 knots), a "wake" may develop as the
cushion of the vessel bumps the crest of small waves. Spectral reflectance

11 and emittance data for "white water" for both breakers and the interface of
waves and wake could not be found. The second extrinsic characteristic,
exhaust, is emitted from three main type of engines: marine diesels, gas
turbines, and fuel-oil-fired boilers. The marine diesel is the most common
engine type for propelling these smaller vessels. Although a few vessels
using this type of engine have stacks or funnels, such as the Yugoslavian "Y"
type river patrol boat, most use exhaust systems installed near the waterline
on the transom. Some older boats still use reciprocating gasoline engines.
The second type of engine, the gas turbine, is the most recent type to be in-
stalled in naval vessels. At present it is limited to newer designed craft
which require faster speeds, such as fast patrol boats. Although some of
these vessels have funnels, most have two or three exhaust ports in the
transom. The last type, the fuel-fired boiler/steam turbine type, is not
common among the smaller craft. Funnels are used in vessels with this
engine type. Since the extrinsic characteristics accompanying eazh system
differ, the detection Imust consider the type of engine, type of fuel, speed
of vessel, and speed and direction of the wind in reiatirn to the direction of
the craft. During this study no spectral data was found describin.g exhausts
from burnt hydrocarbons, nor the density of the exhausts and the rate of ex-
haust dispersion into the surrounding atmosphere.

I1 10. 1. 1.4 Target Temperatures

1 ~Although no temperature data was available for small surface vea-

' sels, such data was found for a destroyer (see References 34 and 35). The
vessel temperatures in this data were related to the ambient air temperature.
Although the absolute temperatures v.,.ried as both a function of time and
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vessel location, the formulas in the above references appear to be repre-
sentative for different parts of the vessel throughout che night. This eestroyer
was powered by four boilers t..:ving twc. turbines which in turn mechanically
drove two screws. These turbines developed 60, 000 horsepower. An aver-
age fast patrol boat has either one or two diesel engines or one or two gas
turbines that develop between 4800 and 10, 500 horsepower. Because vessels
with diesels and gas turbines do not require boilers, the hull temperacure of
such vessels from midship to thi. transom along the vessel sides should nearly
equal those derived from the formula piven in Reference 39 for the super-
structure temperature. Transom temperatures are not available, but should
depend upon the t-ype and size ol the engine plus the speed of the vessel.

10. 1. 1. 5 Sources of Variation

Among the several surface ship variations are the weathering of
expused s';zbstratum and painted external surfaces. With reference to Section
IG. 1. 1. 2, Ship Surface Materials and Coatings, the weatheref^ ,rood (see
Figure 220) reflected less energy than the more recently cut lumber (see
Figures 221 and 222). This variation is intended only for those vessels in
SEA where protective coatings are not normally used. Spectral curves for
the coatings of only two types of paints have been depicted in Figures 216
through 219. NSRDC Report C-2440, dated August 1967, gives other spec-
tral data on naval paints. Weathering of coatings with these paints will I-ause
some spectral changes across the spectrum, particularly in the visible and
near infrared regions. These changes are caused by both varying surface
conditions (degree of roughness) and chemical reace.ons. All plots for the
target materials, except water, are spectral diffused reflectance curves;
however, there are no real target materials which are lambertian reflectors.
Therefore, depending upon the target material, differences will occur at the
viewing angle approaches the norm and as it approaches 900 from the norm.
Everything else being equal, the smoother the finish, the greater the vari-
ance will be for the different viewing angles. To some extent, this effecc L

of different viewing angles is cancelled out because the radiation from the
night sky is from a hemisphere (or half a hemisphere in the case of vertical
surfaces) when the moon is not present as an illumination element. That the
viewing angle difference is not entirely cancelled out is due to the fact that the
night sky is not radiating energy equally from that hemisphere. Another source
of variation is that not all naval vessels are painted the same shade of gray.
Variances will occur worldwide and prol 'bly within each country. In fact,
some vessels are painted olive drab, olive green, or a combination of these
colors. The reflectance cuive in Figure 219 represents the only camocf.,age
navai paint which was available for this study. However, these paints would
be more likely used in landing craft and riverine patrol craft. In addition,
experiments with special paints have been made to extend their usefulness
into the infrared part of the spectrum so that they will "blend in" with the
surrounding water; however, this is not considered very practical since the
water is very nearly a specular reflector. Another method of decreasing the
contrast of the vessel with its background is to cool the vessel to ambient
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jJ air or sea temperature. Techniques used in Reference 34 proved to be more

effective during the daylight than during the night. Since the temperature
varies little during the nigIt, this technique would not likely be practical.

jjI Moreover, for camouflage applications, this technique would be useful in a
limitedospectrum range, from about 2. 0 to 14. 0 Urn, where the radiance values
are primarily from target emittance.

10. 1.1.6 Ship Data* Sources

LH 10.1. 1.6.i General

Data asod for the si'e and distribL.tion of ships came from two•ibasic sources: Jane' Fjgtin
baicsJane's htinSnips, editions 1957-1958, 1961-1962, I167-

LI 1968, and 1968-1969 (Referp-.ces 24 through 27) and Weyer's Warships of the
World (Reference 28), 11.,9 edition. Both of these sources are basically in
agreement, particularly for the larger naval vessels. For the smaller ves-
sels, however, the lengths differ, normally less than a foot. One edition of
Jane's lists the Russian P-4 dimensions as 82 by 16.8 by 5. 5 feet, whereas

H another edition gives the dimensions as 82 by 20 by 6 feet. Moreover, the
i 1968-69 edition of Jane's gives the length as 63 feet, instead of 82 feet. These

references were not intended to -ive detailed data about the smaller naval
craft. Probably better data for both number and types of these craft is avail-
able within the intelligence organizations of the Navy, most probably in the

1 i NWIP series. In addition, information on SEA fishing vessels was gathered
L from the Blue Book of Coastal Vessels South Vietnam, 1967 edition, (Refer-

ence 29), the Blue Book of Coastal Vessels Thailand, 1967 edition (Reference
30), and the Green Book of Coastal Vessels Thailand, 1967 edition (ReferenceU 31). Data for gray paint as shown in Figure 214 was taken from page 176,
Night Reconnaissance Subsystem, final technical report, November 1964,
Martin Marietta Corporation (AD 355 324) (Reference 32). The data on the

gray and olive green nav,-I paints were taken from Forsvarets Korskningsiad
(Research on Camouflage Spectral Analysis) by the Danish Defense Research
Board (AID 370 905) (Reference 33). The temperature data discussed above
were extracted from two reports- The Surface Temperature and Infrared
Radiance of the U.S. S. Gyatt, by NRL, 9 October 1969 (Reference 34); and
The Infrared Radiant Intensity of the U. S. S. Gvratt, by NRL, 15 Octobrer 1969
(Reference 35). Data for the three woods were taken from the University of
Michigan's target signature bank (Reference 36).

10.1..6.2 Processed Data

i •The gray paint curve shown in Figure 214 is the result of cor-
recting a basic document reflectance curve from a MgCO 3 standard to an
absolute curve from 0.3 to 2.0 gtm. Then the resultant curve was extended
to 14.0 p±m on the basis of a telephone conversation with Mel Gra, niberg from
NSRDC who statezl that nearly all naval gray paints were no greater than 27%

in the visible part of the spectrum and that after 3 or 4 p.m they were rela-
tively fiat oat to 14 tm. The data for the wood materials were changed from
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relative reflectance curves to a MgO standard to absolute curves, but they
were not extended since no other logical data could be gathered to do so,
The data in Tables 7 through 10 and Figure 213 were extracted from infor-
mation in .Jane's and Weyer's (References 24 thrcugh 28).

10.1.1.6.3 Data Gaps

For the naval gray paints on both U. S. and foreign vessels,
the spe-tral diffused and directional reflectance and emittance data have
gaps throughout the 0. 2 to 144im region. Mel Greenberg, of NSRDC, stated
that two limited-access documents on some U.S. Naval paints have been
published by his organization, but this information was not available in time
to acquire and incorporate into this study. In addition, if boats and/or ships
that could be used as paramilitary vessels, such as some fishing craft in
SEA, are considered, then spectral reflectance and emittance curves would
also be needed for the woods and other materials in their construction. Num-
bers and types of navae craft for each country, particularly those behind the
iron curtain, is somewhat lacking.

10.1.2 Aircraft

The current numerous types and sizes of naval and air force air-
craft may be initially divided into five basic types of propulsion: jet, pro-
peller, rotary wing, lighter-than-air, and glider. Aircraft can also be
grouped in military and civilian categories. The military aircraft can be
further categorized as follows:

(1) Bomber (8) Special Research
(2) Fighter (9) Target
(3) Reconnaissance (10) Pilotless Aircraft
(4) Transport (11) Guided Missiles
(5) Trainer (12) Glider
(6) Search and Rescue (13) Lighter-than-air craft
(7) Communications - Utility

This report treats of only jet fighter and bomber aircraft since they pose the
greatest threat to surface vessels, although remote controlled pilotlesa air-

craft used as "flying boimbs" and launched from either land-based or sea-
surfaced vehicles could also pose a similar threat. Table 11 lists the
known jet fighter and bomber aircraft that are being built in various coun-
tries. This listing indicates that only four or perhaps five countries are
building combat fighter aircraft: France, Great Britain, U.S.A., U.S.S.R.,
and possibly Sweden. These countries have sold older jet airctaft to many
smaller powers, and in some cases, new aircraft have been sold or given to
the smaller powers through military aid programs. For example, the USAF
F-11 1 was to have been sold to Australia, and the MIG-Zi can be found in
Egypt. Whether the latter example is an instance of military aid is n )t cer-

tain; in any event, the MIG's are flying under the flag of the U.A.R. Most
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H TABLE 1l

Fighter and Bomber Aircraft Currently Manufactured

ii Country Aircrailt Designation Wingspan Length Range. ml. I Speed

Australia Dassault Mirage I I -D 27' - 48' 3054 870 mphCanada CL-41A & GICT-I 14 Tutor) 36,5. 9" 32.0' NA 480
C eehoslovaklua L.29 ("Maya") 3319" 35'5-/42. 3974 382Egypt HA- 300 1914" 40'8" NA NAFrance Mirage W-B 27' 50i-1/4" 305+ 870: -C 48, S-1 I3

-E 4913-1/2- ..

R 50' 10-I14"
Mirage F' 27'104-IV" 49'2-112" 2050 Mac, 2 Z+
Mirage G 42'B" 55,1" 4000 Mach 2 54
Mirage XI-V 8l7-I1144" 59'11/2" NA NAMirage IV 38'10-Il;' 77'1" NA Mach 2, 2
Potez 94 3/13/4" 1336" 995 485 mph

India HAL MF-24 Marut 29'6-1/4" SZ' 3/4',. NA Mach 1.02
HAL/HAWKER Gnat 2Z.2" 29.9" S00 Mach 0.98International Sepacat Jaguar Z7"10-1/4" 50'11" 405- 840 mph

(AnRlo.French) VFW/FIat VAK 1913 NA NA NA NA
Italy Aertnacchi 34'8" 34,11-1/4" 708+ 478 mph

Flat G9IY 296-1/2" 3813-1/Z," 460 Mach 0 93
S'eden SAAB-35 Draken A 30,10" 50.4" 350 Mach 2

B 447 Mach :,. 4
SAAB-37 Viggen 34'9-114," 53'54/4" NA Mach 2+SAAB-105 (ak 60) 3112" 34'S" 870 447 mph

Switzerland FFA P-16 Mk 1I1 AA-7 36'6-4/2" 488-3/4- Ag0 708 mph
AJ-7 " 465 727 mphAR-7 

627 690 mph
United Kingdom BAC Lightning FMK 6 34'1I" 55'3' NA NA

Hawker Siddeley Harrier OR MRI 2513" 46'4" 500 Mach 0 95
Buccaneer S. MP SO 42'4" 63'5" NA NA"Vulcan B. MR. 1 99' 97'." NA NA" B. MR. 2 I11' 99,11" 172+ Mach 0.94U.S.A. Cessna A-37 35'10-1/2,, 2913-1/2" 460 SUi mph

Republic F-105 Thunderchief 34'II.22" 69'1.18' 2070 Mach 1. Z5
General Dynamica F-l IIA 63' 66'9" 3800 Mach 2 5
General Dynamics F- 10t

Convair Delta Dagger 38.1' 68. 3' 950+ 680 knotsGcme-al Dynamics F-106
Convair Delta Dart 38' 70' NA Much 2+

Gru~tnu Intruder _6A 5". 5417-- 3225 620 mp4Grumwnan Intruder ZA_.6A 53' 5513"- 2995 NA
Grtumn~ Intrudert A-6B 53, 59'5." NA NA&
Lockheed F-101 Voodoo 39.7' 67.4' 1000+ 870 kcs
Lockiheed F.104 StarlighterPI' 5419- 745 Mach 2 2
Lockheed YF-12A 55'7" 107's" NA NA
Ling-Tecnco-Vought Crusader

F-SA/B 35.8" S4'3" 600 1000 Mph 4Ling-Ternco Vought Crusader
F-SC/fl 3S'l" 54-3" NA Mach 2 -

Ling*Tloco-Vought Crusader F-8E 35-2" 54161- NA Mach 2 +L~in-Toemo- Vaught Corsair Un A-7 38-'-, 46' -IZ-1" 71S 578 mph
SiMcDonnell Douglas Phantom U[ F-4 3815-1 58'3", 900+ Mach 2 +

McDonnell Douglas Skyhowk A-4A. a 27161- 38-4-1/4-1 Z000 6641661 mph

Ui McDonnell Douglas Skyhawk A-4C 27'6" 39'1-314" 2000 649 n.ph
McDOcO4 D0111146 Skyhawk A-4E. F 27,6", 4013-1/4", 2000 674 mphNorth A•,merican Rockwell Vigilante

A-5 53' 75'10" 2650 Mach 2) INorthrop F-SA 25,3" 47'2" 368 Mach I 4SNorthrop F-SB 253" 4b 380 Mach 1 36
U. S. S. R. Mekoyan MIG-ZI("Fishbod-) -25' - ' 55 375 Mach 2Mekoyan STOL ("Faithles") - 30' - 60,6" NA NA

Mekoyan Variable Wing ("Flogger") - SO' - 57' NA NA
Mekoyan MIG-3 ("Foaxbet") - 40' - 69' NA Mach
Myssn.hchev 201-M -"Biaon") 170' - 15S' 5500 525 kt.Sukhoi SU-7B - 30' - 56' NA Mach 1 6
Sukhol Variable Geometry SU-7 -41' - 56' NA NA
Sukhoi SU-9 ("Fishpot") - 26' - 56' NA Mach I S

I !Sukhoi Twin-Jet Interceptor
("Flaoan "A") - 30' -_68' NA -Mach Z 5

Sukoli Twin-Jet Interceptor STOL("Flagon "B") NA -cS' NA NATupolev TU- 16 ("Badger") 110' 120' 3000 + - 587 mph

Tupolev TU-•ZZ ("jBinder") -. 80' - 130' t. A NA.1 Tupolev T7*-? (_Fiddar") -65' 14A "NA - Mach 1.75
Taorvltv YAK.ZS ("FIlashlht") - 38'6" -62' NA - Mach 0.95
Yakovlov YAK-Z& ("Firabhar") NA NA NA NA
Takovlev YA••Z8 ("Bea ~r,) NA NA NA NA
Unid~enuud VTOL ('lFr..haod") - 34'6" - 5s' NA NA

SYgoslavia Soak GZA Galb (Seagull) 34'4.4;2Z- 33'11" 770 505 mph
Soka !-I J~atr4b (Hawk) 3478" 35*1-12" 945 510 mph
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modern fighter aircraft, including fighters, interceptors, and fighter bombers,
have one of the three following designs: (1) The first design is one which in-
cludes one or two engines mounted in the fuselage and a nose air-intake for
a single-engine fighter (sometimes with the same general configuration as
that for a two-engine fighter) or for a two-engine a'ghter where the intakes
are mounted along each side of the fuselage ahead of the lead edge of each
wing. Most have bubble canopies located on top of the fuselage and mounted
ahead of the leading edge of the wings, and carry cae or two crew members.
Wings are of the swept wing type and may be either high, medium, or low
wing. (2) The second design is the same as the first except that wings are
of the delta design and horizontal stabilizers are normally lacking. (3) 'rho
third design is the multi-geometry fighter where the degree of wing sweep
may be changed in flight for various operating missions and airspeeds. Al-
though the United States has produced only one basic type (F-111) of the last
design, several configurations based on the design principle have been built

I •in the Soviet Union (namely the "Flogger" and the variable geometry SU-7)
and in Frarce (•iimely the Dassault Mirage G). Although extmansively pro-

r duced in the J. S.A. and the U.S.S.R., bomber aircraft, except for small
light bombers and fighter-bombers, are not b-Ing manufactured in other
courntries,

There are three 1'asic bomrber configurations. The first (and
most common in the U.S.A.) is one where the engines are mounted exter-
nally in pods from forward sloping pylons mounted on the lower wings.
Bomber s with this configuration have from two to eight jets (such as the
B-66 and B-52). The second configuration 3s one where'the engines are
mounted underneath the wing but attached directly to it (such as the "Beagle").
And the third is one where the engine is mounted in the middle of the wing
(for example, th•. "Bison" of the U.S.S.R. and the B-57 of the U.S.A.).

The wingspan of most fighters is between 30 and 40 feet and the
overall length is between 40 and 70 feet (exceptions in both dimensions can
be found). An analysis of seven types of light-attack bombeka indicates that
their average wingspan is approximately 65 feet and their average overall
length is a-)out 65 feet. The measurements for six medium bombers give
an average wingspan of approximately 102 feet and overall length of about

107 feet. The average of the dimensions for two types of heavy, long-range
bombers gives a wingspan of 177.5 feet and an overall length of 156.3 feet.
Modern concepts favor the replacement of large slow bombers by bombers
baaed upon large two-engini two-seat fighters with higher speeds in the
Mach 2 range.

10. 1.2Z. I A~ircra't Skin and Coatings

The aircraft skin is normally an aluminum alloy which may or
may not have an external painted surface. If the aircraft is painted, its
color, beside3 its identification and military markings, depends to a great
"extent on where it will be based. For example, many countries paint
irregular shapes of brown, tan, green, or olive drab to the upper wings,
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S the sides and top of the fuselage, the fin (vertical stabilizer), and the upper
sides of the horizontal stabilizers. A dark paint, usually a flat black, is
normally found ahead of the bubble canopy. Such paint is intunded to cut1down the light reflected from the upper nose of the aircraft. Almost always
land based, aircraft with such paint are so colored in order to break up
their outlines and to blend their configurations with natural earth and vege-
tation when they are on the ground. Other aircraft are painted a medium
gray on the upper and side surfaces; the underside of their wings and fuse-
lage are usually a light gray or cream color, but often unpainted. Aircraft
of this color normally operate outside combat zones or on ai,,craft carriers.
Figure 223 shows a spectral reflectance curve for a weathered aluminum
aircraft which was unpainted and Figure Z24 presents the spectral emit-

tance curve for an aircraft with a neutral finish.

1 0. 1. 2.2 Extrinsic Characteristics

The extrinsic characteristics of jet aircraft are their vapor Lvails
at higher altitudes, their exhaust smoke at lower altitudes, and the heated
airstream as the aircraft fly at high speeds. Exhausts from aircraft vary
considerably depending on the number and type of engines, the use of after-
burners, the nozzle design, the type of fuel, and the rate of burning. Winds,
airspeeds, and exhaust-exit configurations determine the duration of these
gases and the rate at which they cool as they are dispersed into the atmos-
phere. The transition from pure exhaust products to a mixture of exhaust
plus air is rapid as the gaises dissipate and the temperatures decrease.

10. 1. 1. 3 Aircraft Data Sources

Data cn the dimensions and types of military aircraft were gathered
from Jane's All The World's Aircraft, 1968-1969 edition (Reference 37); and
the Aircraft Recognition Manual, Nay Weps 00-80T-75, dated Jane 1962 (Ref-
erence 38). Data on extrinsic characteristics were found in pp 56-68, Hand-
book on Military Inirared Technology, 1965 (Reference 39); pp 81-91, Supp.le-
ment 2 of the Handbook of Military Infrared Technology, 1967 (AD 585 778)
(Reference 40); and a classified report entitled Special Camouflage Paint (U),
dated 27 October 1967, by the Operational Test and Evaluation Force at
Norfolk, Virginia (AD 385 323) (Reference 41),

S10. 1.O2..4 Data Gaps

Spectral reflectance and emittance data for vapor trails and ex-
haust g- ses could not be found during this study. The number and type of
aircraft tor air and naval forces of several nations could not be obtained.
This particular data should be available on a limited, classified distribution
basis for military organizations. The missions of various types of aircraft
would have been helpful in selecting the aircraft for this study. For example,
an unclassified news release revealed that "Bison" (201-M) Russian bombers

Shave flown directly from the Soviet Union to U. S. fleets and task forces in
the Mediterranean and the Atlantic Ocean.

I 49



10.2 Backgrounds

A target background may be the sky or the surface material, depend-
ing upon the scan angle and field of view of the sensor. Materials comprising
these backgrounds are those constituting the atmosphere, the oceans, and the
land (shore). For example, in a surface-to-air mode, the sky will likely be
the only barkground (here the sky is considered as an ether with energy emitted
by its excited particles and chemicals and with energy transmitted, back-
scattered, and attenuated by it as the energy travels to the sensor's aperture).
In an air-to-surface mode, only the sea will likely be a background, although
the shore and/or the sky could be inchtied as target backgrounds. In the
surface-to-surface mode, all three background types could play a major part
in the background scene.

10.2. 1 Night Sky vs Zenith Angle

The night sky as a background consists of nightglow and tropo-
spheric thermal radiation seen through the atmosphere as distributed sources
of radiance. Stars appear as point sources. The spectral radiant intensity
of the night sky changes with zenith angle because of the geometry of the
curved-earth sources and the variation in atmospheric absorption. In a sky
setting, a sensor views nightglow and senses radiation which corresponds to
the spectral curves in Figures 225 through 234. The background tropospheric
thermal energy for ten zenith angles is plotted in Figures 235 through 244.

The total starlight energy plotted in Figures 85 through 95 iv not a
true representation of the star energy because the stars are a series of point
sources rather than a distributed source. Techniques to evaluate the star
energy are presented by Chapman (Reference 42); however, his curves repre-
sent energies above the atmosphiere. The itpectral transmission curves in
Figures 75 through 84 should be used to determine the spectrum of any par-
ticular star at the surface of the earth.

10.2.2 Sea Water vs Elevation Angle

The Handbook of Military Infrared Technology (Reference 39) con-
tains on page l6.( curves of the reflectance of sea water versus observation
angle for the range between 1 and 14ý.tm, see Figure 245. The Handbook of
Chemistry & Physics, Vol. 41 (Reference 43) lists the index of refraction of
water as 1. 33290 which permits a reflectance calculation of 0.0203 at 0. 55rri.
This value corresponds to that for the 0* incident angle and the I tm of the
plotted curves in Reference 39. Accordingly, these curves were extrapolated
to 0. 2pm from 1 ptm by assuming that each curve has a constant value for this
wavelength range. Figure 246 from page i67 (Reference 39) describes the
effects of the incident angle integrated over the 1 to 144m spectrum In emis-
sivity and reflectivity. This curve was used to scale the 70* curve. Although
the integrated reflectance apparently becomes 1 at 90, no basis could be found
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f 11 to predict the spectral shape at angles above 80" which seemed validated. Our
70' curve is an interpolation which seems reasonable, conqidering the data
used. These four curves are pre~ented in Figures 247 through 250 plotted toLI the scales of this report. Since Reference 39 assumes sea water to be opaque
across the spectrum,I 

e- I-p 
(23)

U because 
T0

1' 
(24)

H~I.

Lij
0 i 

-
14

Figure 245. Spectral Reflectance of a Water Surface vs Angle of
H I~rIcidence (Reference 39)

'4j
'Li"

•1 UNote: Observe scale chauge

Figure 246. Average Spectral Emittance and Reflectance of Water vs
Angle of Incidence (Reference 39)
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10.2.3 Discussion of Sea State

The radiative properties of the sea surface obviously change with
the sea state. The only directly useable data are reported in Reference 39.
This report published the curve reproduced in Figure 251, which shows a
dropping off of reflectance with observation angle for higher sea states.

A*

W A N

i • = 0;ý 2" .denotes Beaufort 4 wind (upper and lower values

.0.

of theoretical calculations).

Figure 251. Effect of Sea State upon Reflectance vs Angle of Incidence

Il

(Reference 39)

The sea is normally a series of small waves superimposed upon
larger waves. The wave periods range from inches to miles for fourier
representations. An integrated reflectance could be calculated ior a large
sea area by considering each sflat, essentially "flat, a radiating surface

element making up the total surface. Each small element would have its
unique angle of observation and its unique size and shape. However, this

owould be a formidable computing task. No precalculated data of this type
could be located, except for that give n R aFigure 251.
S10.7-4 Shore fack3rounds

For this study, the shore was defined as being composed of naturau

and man-made ob0jects which e+.Vend from the shoreline inland come 5 to 10
miles or to the limit of the line of right, whichever it less, and of those ob-
jects which extend seaward trom the shoreline and are at oe above the water-
line durenb consiergt of a full day. Since these objects and the scene geometry

could make up at infinite number of scnes, only a smale number of gener-
alized materials and types of scenes wiln be treated in the folowing paragraphs.

10.24 Shre Bckgru$d
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I 10, 2.4.1 Landforms

I ~Although unimportant in itself, landform is treated here to deter-
mire (1) the vertical area that the shore displaces in the scene of view and
(2) the percentage of night sky illumination that falls upon the landform.
These factors, of course, depend not only on the actual landform, but also
on the range and angle of view of the sensor. In nearly all scenes, the shore
will include a horizontal strip greater than the angular field of view of the
sensor. There are many types of landform as indicated by the map Coastal
Landforms of the World. This map is from Natural Coastal Environments of
the World produced by the University of California (Reference 44). Since the

[map gives the landform for any area, it would be helpful in determining the
scene geometry for a given area. If, however, a general solution is needed,
then the landform can be generalized into the following three types: (1)
gently sloping planes which normally intersect the sea and form a beach com-
posed of sand with possible longihore bars of coral barrier reefs off shore,
(2) hilly or mountainous terrain which intersects the coast line and forms

[ either dissected sea cliffs or narrow rock- and boulder-strewn beaches
L interspersed with small pocket beaches of sand, and (3) a combination of

(1) and (2) where a coastal plain develops shoreward from the mountains or
hills.

U 10.2.4.2 Surface Materials

The surface materials consist of natural and man-made objects.
In the following discussion, each of the selected objects is represented by a
statistical set of reflectance and emittance curves. The representation of
each of the natural materials in Figures 252 through 306 consists of three

ii curves: the mean of the set and the ± one sigma values of the set.. The un-
biAsed estimate of a is used here. And the representation of each of the man-
made materials in Figures 307 through 325 consists of only one curve-the

1 mean of the set-since the number of original curves for each of the man-

U made materials was insufficient to compute valid statistics. Whenever sets
are said to be combined on a "one-to-one basis, " each set is given equal
weight, regardless of the number of original curves making up each set
being combined.

H 10.2.4.2.1 Natural Surface Materials

Natural surface materials along the coast consist of organic
and inorganic elements. Excluding animal life, the materials composing the
shore background are vegetation, soils, and rocks.

1' i10.2.4.2.1.1 Vegetation

Vegetation can be broken down into five basic types: tree
foliage, both deciduous and coniferous; plants and shrubs; crops; grasses;
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and barks and twigs. Normally, vegeta..ion makes up the largest part of the
shore background, particularly in the tropical and temperate areas of the
world. In the temperate, subarctic, and some tropical areas, the season
will determine whether the foliage is alive or dead.

10.2.4. 2.1I. 1.1 Tree Foliage

The tree foliage consists of foliage from deciduous, tropi-
cal evergreen, and palmaceous trees. Although the amount of reflectance for
different species varies, particularly in the visible spectrum, all the "broad-
leaf" trees have very similar spectral reflectance curves. Figure 252 repre-
sents the statistical set of several hundred reflectance curves for different
live deciduous, evergreen, and palmaceous leaves. Figure 253 shows the
emittance curves for the same type of tree foliage; however, the number of
original curves in this set is less than that in the former. Figure 254 shows
the reflectance curves for dead deciduous leaves. The coznparison of Figures
252 and 254 shows the ireflectance difference between live and dead tree foliage.
From 0.55 to 0.68tm, the live foliage has a lower reflectance than the dead
foliage; thus the leaves change from green to brown or red as they 'Ie. Live
leaves have a strong absorption band which is centered at 0.68 .Pm ana is com-
monly referred to as the chlorophyll dip in the reflectance curve. Notice that
the live tree foliage has a higher reflectance than the dead foliage in the 0. 72
to 1. Zum range. After 1. 2um r and up to 2. 51m, the dead vegetation reflects
approximately twice the amount of energy that the live vegetation reflects.
Coniferous needles have generally the same spectral curve shape as the broad-
leaf trees (see Figure 255). Figure 255 was prepared to. represent many types
of live coniferous needles. The comparison of Figures 252 and 255 shows, in
general, that the coniferous needles have a mean value which is less than that
of the broadleaves. Figure 256 represents a statistical set of reflectance
curves for broadleaf and coniferous vegetation on a 'one-to-one basis. This
is given to show live tree vegetation, in general, for unknown scenes.

10.2.4.2.1.1.2 Plants and Shrubs

Although plants and shrubs are broadleaf vegetation and
should reflect approximately the same as broadleaf trees, some differences
were found. Figure 257 represents a statistical set of reflectance curves for

live plant and shrub vegetation. The comparison of these curves with those
for the broadleaf trees shows plants/shrubs reflect more light in the 0.40 to
5.51rm region and about 3 to 7 percent less in the 0.72 to 1.3 im region.
Figure 258' presents the set of the emittance curves for plants and shrubs,
and Figure 259 shows the set of the reflectance curves for dead plants and
shrubs.

10.2.4.2.1.1.3 Crop

Figure 260 presents the statistical set of reflectance curves
for various cultivated crops. These curves very nearly match those for the
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Ibroadleaf tree foliage, with a small possible exception in the 0. 72 to 1. 3 Pm
region where the crops have approximately 3 to 5 percent more reflectance
than the broadleaf tree. The reflectance curves in Figures 261 are for dead
crop leaves. The same general changes for live and dead broadleaf tree
foliage are true for crop leaves, although the curves for the dead crop leaves
have a greater range for ± one sigma in the 0. 5 to 0. 7pm region and again in
the 1.2 to 2.5 pm region.

H 10.2.4.2.1.1.4 Grasses

Reflectance and emittance curves for live grasses appear
Sin Figures 262 and 263, respectively. Since only one emittance curve for live

grass could be found, no sigma could be prepared for Figure 263. The dead
grass reflectance curve in Figure 264 varies considerably from other dead
vegetation. Although only one reflectance curve was available past approxi-
mately 1. 15gtm, the curve bas no dips at 1. 5 and 1. 8gm as do the curves
for other dead vegetation.

10.2.4.2.1.1.5 Bark and Twigs

L The barks of both deciduous /evergreen/palmaceous and

coniferous trees were treated together; the same was done for twigs of these
trees. Figures 265 and 266 present, respectively, the reflectance and emit-
tance curves for bark. A reflectance curve for twigs is shown in Figure 267.
A statistical set of reflectance curves for bark and twigs on a one-to-one
basis is represented in Figure 268. Although barks and twigs may generally
not be a part of the background scenes, they will be a factor in the hardwood
forest in the temperate zone during the late autumn to early spring and in the
Monsoon forests during the dry season. A comparison of the bark and twig
reflectance curves indicates the change in reflectance as the twigs become
branches of the tree. From the near ultraviolet to 1. 4 pjm, the reflectance
for the bark is considerably less than that for the twigs.

10.2.4.2.1.2 Soils

Soils are very difficult to classify either spectrally or any
other way. Although soils are not an important part of the scene where
vegetation flourishes, they play an important role in semiarid, arid, and
subarctic regions. Reflectance and emittance characteristics of soil depend
upon many factors, including color, texture, structure, chemical composi-
tion, and moisture. In classifying soils as to type, all the foregoing factors,
except the last, are important. In this study color denotes that the soil is
dark or light. Dark soils indicate a high percentage of organic material
(humus) and nitrogen. Light-colored soils indicate lower amounts of humus
material. Included in the latter are red and yellow soils which indicate iron
compounds. Gray and white soils indicate reduced quantities of iron togetherL with anaerobic decay of organic matter under poor drainage conditions. Brown
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and grayish brown soils usually have some iron and humus content. Texture
refers to the particle sizes found in the soils. Sizes of these particles are clas-
sified as follows: boulders, greater than 256 mm; cobbles, 64 to 256 mm;
pebbles, 4 to 64 mm; granules, 2 to 4 mm; very coarse sand, I to Z mm;
coarse sand, 1/2 to I mm; medium sand, 1/4 to 1/2 mm; fine sanJ, 1/8 to
1/4 mm: very fine sand, 1/16 to 1/8 mm; silt particles, 1/256 to 1/16 mm;
and clay particles including colloids, less than 1/256 mm. Since soils are .
a mixture of these various particle sizes, the soils must be further delineated
as shown in Table 1Ž.

TABLE 12

Soil Classified by Texture

Percentage

Soil Texture Type Sand Silt Clay

Sands over 80 (together less than 20)
Sandy loams 50-80 (together -- 20 to 50
Loams 30-50 30-50 less than 20
Silt 1oams under 30 over 50 under 20 L
Clay.foams 20-50 20-50 20-5i0
Clays (together under 70) over 30

Structure represents the arrangement of soil particles into
clumps or aggregates after the soil has been broken up mechanically, such
as by plowing. In light-textufed soils, such as sand, texture is unimportant
since these soils are made up of grains, not aggregates. Medium-textured
soils such as the oarns are favorable for plant growth, whereas the heavy-
textured soils such as the clays are unfavorable for plant growth. Generally,
chemical composition reflects that the soils have either a high acid or alkaline
content. High acid type soils are cauised mostly by low levels of lime. Be-
cause of the many independent factors in soil classifications, th;.s study evalu-
ated only moisture and texture, as summarized in Table 12. As far as moisture
of the soil was concerned, the soils were either dry or wet. Medium-wet soils
are represented when the data was available.

10.2.4.2.1.2.1 Clay

Figures 269 and 270 show, respectively, the composite
reflectai :e curves for dry and wet clay soils. Figure 271 presents curves
that are the composites of those in Figures 269 and 270. Because clays have
the smallest particle sizes, their reflectance are not aa much dependent upon
texture as are the larger particles which make up the other soils. The mois-
ture content is an important consideration, however.
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L 10.2.4.2.1.2.2 Loam Clay

LI Figures 272 and 273, respectively, show the composite

reflectance curves for dry and wet loam clay. Figure 274 presents curves
that are the composites of those in Figures 272 and 273.

10.2.4.2.1.2.3 Loam Silt

L Figure 275 shows the composite reflectance curves for dry
loam silt. Although Figure 276 presents the same type of curves for medium-
wet loam silt, its use is limited since It c.overs only from the near ultraviolet
through the visible part of the spectrum. Figure 277 shows the reflectance
curves for wet-loam silt soils. Figure 278 is a composite of Figures 275, 276,

U and 277.

10.2.4.2.1.2.4 Loam

L Figures 279 and 280 show, respectively, the reflectance
curves for dry and wet loam soils. Figure 281 is the composite of both dry
and wet loam soil curves on a one-to-one basis.

10.2.4.2.1.2.5 Sandy Loam

U ~Figu-es 282 and 283, respectively, present the reflectance
curves for dry and wet sandy loam soils, and Figure 284 is the co.-Iposite of
Figures 28.2 and 283. These three figures are somewhat limited in their use-
fulness since they only cover the spectrum between 0.4 and 1. 251tm.

I 10.2.4.2.1.2.6 Loamy Sand

Figures 285 and 286, respectively, show the reflectance
turves for dry and wet loamy sands. And Figure 287 is the composite of
Figures 285 and 286. These soils differ from the sandy loam only in content
of sand versus the silt/clay content. Since. the sandy loam contains less sand
than the loamy sand, the latter generally has a higher reflectance level in the
shorter wavelength regions of the spectrum.

S10.2.4.2.1.2.7 Sand

Of a'II the types of soils, sand is probably the most important
Ssince it will more likely be a part of background scene than all the other types.

Sand appears most frequently in the form of beaches in the back shore area,
and occasionally in the form of off-shore bars and coastal dunes. Figure 288

Spresents the reflectance curves for dry sand, and Figure 289 shows the emit-
tance curves for dry sand. Figure 290 shows the reflectance curves for wet
sand. Figure 291 is the composite of Figures 288 and 290 for the dry and wet

U sands.
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0.Z.4. Z.1.2.8 Co.mposite SoiLs

Of all the soil curvea, the following will be most useful
when the type of soil is unknown. These forthcoming curves are composites L
"of all the previously mentioned soils. Figure 292 presents the cl'mposite
reflectance curves for all dry soils except sand, and Figure 293 shows the
composite emittance curves for all the dry soils except sand. Figure 294
gives composite reflectance curves for all wet soils except sand. Figure
295 is the composite reflectance of Figurer :92 and 294 for all soils ex'ciud-
ing sands. Figures 296 and 297 present, respectively, the reflectance and
emittance curves for all dry soils including sand. Figure 298 displays the
reflectance curves for all wet soils including sand. And Figure 299 is the
composite of the reflectance curves for all wet and dry soils and sand.

10.2.4.2.1.3 Rocks[

Rocks can normally be classified into one of three types:
sedimentary, igneous, and metamorphic. Sedimentary rocks include sand-
stone, limestone, and shales. These rocks are formed by the cementing of
sand, lime, and clays together urider pressure. The igneous rocks are formed
from molten rock which was pushed toward the surface of the earth but cooled
and solidified before it became exposed at the surface. Metamorphic rocks
are one of the first two types whose structure changed after it was originally
created, normally under heat and pressure. Schist, slate, and marble are
types of metamorphic rocks. Slate is shale which has undergone a meta-
morphic change, and marble is limestone which has undergone a similar
change. Coral, although not a rdck, but a living marine animal is included
in this section by association. Figure 300 presents the reflectance curves
for coral. Granite, a common rock found where mountains intersect the
coast to form rocky cliffs, is represented by the reflectance curves in Figure
301 and by the emittance curves in Figure 302. Figures 303 and 304 present
reflectance curves for sandstone and limestone, respectively. Figure 305
gives the composite of the reflectance curves for many types of rocks (not
just the above) and Figure 306 offers the composite of the emittance curves
for many types of rocks.

10.Z.4.2.2 Man-Made Construction Materials

Materials in this section will deal with concrete, masonry,
asphalt, glass, ferrous metals, and wood.

10.2.4.2.2.1 Concrete

Reflectance curves for concrete and cement are shown in
Figures 307 through 310. The cement and concrete represented here are
used as building materialr. The curve in Figure 308 represents a sample
of concrete that was part of a runway that had been weathered 24 years.
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JThis curve has somewhat less reflectance than the other curves, probably
due to rubber and oil that has accumulated on the surface over the years.

10.2.4.2.2.2 Maasonry

Reflectance curves for a light-yellow brick, a medium-
brown brick, cinder block, and terra cota building materials are shown in
Figures 3.1 through 314, respectively.

I 10.2.4. 2. 2.3 Ah;lýIt

Asphalt is found most commonly in road beds; however,
asphalt type oi shingles for roofing and flat-industrial type of roofs with
stone over asphalt are commonly used as construction materials. The
curve in Figure 315 represents an aged asphalt base roof shingle which
was a reddish brown. Figure 316 is a reflectance curve for an asphalt
road.

11 10.2.4".2.2.4 Glass

A reflectance curve ior glass is shown in Figure 317. Ex-
treme care must be used when using this curve since it is a diffused-re-
flectance curve. Although all reflectance and emi.ttance curves in this
report with the exception of wate-r are diffused curves, glass will have greatLi fluctuations particularly when viewed near the norm since it is a specular
reflector.

L [10.2.4.2.2.5 Ferrous Metals

Iron, steel, and steel alloy vary considerably over the spec-
trum. Examples are emittance curves for iron in Figure 318 and for a
corrosion-resistant steel in Figure 319. Reflectance curves for galvanized
iron in Figure 320, rusty iron in Figure 321, and rusty steel in Figure 322
are included to indicate the reflectance characteristics of other forms of
ferrous materials. Galvanized roofs are fairly common in some areas.

When such roofs are not properly maintained, the resultant rust will change
the spectral reflectance of the basic material.

10.2.4.2.2.6 Woad

Wood is a very common building material, especially in
underdeveloped areas. Since it is normally protected by paint or other
covering, its reflectance and emittance values would be for the protective
coating rather than for the wood itself. The only reflectance curves avail-

Sable for wood, other than those shown in Figure. 220 through 222 under the
target section of this report, are as follows: Figare 323 for creosote dippee.
wood, Figure 324 for a smfoeth freshly sanded piecc of plywood, and FigureI 325 for an old weathered piece of plywood.

II 59



10.2.4.3 Global Location of Surface Materials

When the shore is part of the background scene, its rural or urban

character should be considered. If it is rural, which it would most probably

be under a random sampling, the latitude, if not the longitude as well, should
also be considered. Of course, natural materials will make up the rural

scene, and man-made construction materials will predominate in the urban

scene.

10.2.4.3.1 Natural Materials

Knowledge of the latitude, if not the longitude as well, is es-

pecially helpful in determining the vegetation in the background scene. Such
knowledge along with information of the coast (east or west), regardless of
the landmass, permits generating a "typical" scene. Table 13 is a general-

ized listing of the vegetation types which appear world-wide, and Table 14
describes each of these vegetation types along with an identification number

to be used as a key when referring to Figure 326, the Coastal Vegetation of

the World Map (see Reference 44). Through Tables 13 and 14 or Figure 326

•ii and Table 14, the more logical combinations of live and dead vegetation may
be determined for a specified location. Table 15 shows the vegetation found
between the Arctic and Antarctic Circle by both mileaje and as a percentage
of the total. Although the number of miles for each type of vegetation is lack-

ing somewhat in accuracy and may be significantly low in mileage due to use
of a small globe, the relative percentages should be very close to the correct
figuire.

TABLE 13

Major Vegetation Types by Coast and Latitude

Latitude West Coast

Arctic Circle to 58*N Aleutian
580 N to 389N Oregonian or Virginiar
380 N to 30 N Mediterranean
30ON to ZZ°N Sonoran
220N to 20 0 -15ON Tampicoan or Tamaulipan
15 0-20 0 N to S°-100S Timoran. Nicaraguan. or Malayan
50-I 0 *S to iP-Z40 S Sonoran
80-240S to 320 S Atacaman
3210 S to 380 S Mediterranean
380 S to 40US Kyushun
40 0 S to 55PS Tasrnan

Latitude East Coast

Arctic Circle to 550-60ON Aleutian
550 .60° N to 480 -44° N Alaskan

480 -440N to 380 -34 0 N Virginian or Oregonian
380 -44 0 N to z/ -2ZI"N Kyushmin
27"-?Z°N to 300 S Tamr?.coan, Tamaulipan, Timoran

Nicaraguan, or Malayan
301S to --- Varies greatly as to each specific area.
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I TABLE 14

flCoastal Vegetation

Identification Vegetation Vegetation
Number Class T Deicriptlon

I Desert Atacaman Barren dese. Little or no vegetation. Original rock orsandc•olors predominate.

Z Desert Patagonian Cold desert. Occurs on the southern Atlanti. coast of
Argentina. The vegetation consists lIrgely of widely
spaced stunted bushes that range from 3 to 8 or 10 feet
high. are mostly thorny or scrubby, and vary greatly in
shape. Basins and gulches are generally salt-laden tracts.

Bitter cold winters and hot dzy summers with suddenly
rising winds.

3 Desert Sonoran Subtrovic desert. Similar to the thorn forest areas but
differing by the amount of numerous shrubs and small trees.
Spacing varies from widely scattered in the drier parts to

relatively close in the more humid areas. ý'uch trees that
do exist are normally found in dry washe4. Rains are
infrequent.

4 Grassland A!eutian Tundra and polar barrens. Treeles3 landscapes character-
"ized by dw&rf herbs, grasses, mosses, and lichens which
only partially cover tha ground during the summer. The
changes which occur seasonly are considerable. Winter,
of course, is white with snow and tce; spring is brown from
the hare soil, late spring and summer brings the greens
of the arctic flora.

5 Grassland Tripolian Short irate, desert grass. This is a shorter grass than the
Argentinean type generally found between the Mediterranean
and desert areas. This grass is ienerally found in dispersed
clumps reaching a maximum knee-deep height.

6 Grassland Argentinean P tairie i Occurs in warm temperate to temperate climates
between the temperate forests and the short grass desert
environm.ents. Grass may grow to waist height but is
conmmonly shorter.

7 Grassland Visayan Tropical arasslands. Very local type of vegetation found
throughout the tropical areas. Very similar to the tropical
savannas but generally occur where more moisture is
available. The grasses differ from the savannas, however.
in that they average 5 to 7 feev in height, but may reach
heights of IZ feet. These blades of grass are wide, coarse,

and fibrous. but their most striking characteristic is their
I razor-sharp saw edges.

a Evergreen Srtubland Mediterranean Sjleroghvll woodland and shrub. A unique and witiely occur-
rir.g vegetation type found on both equator aides at the middle
latitudes but only on the west coasts of continents (if the
Mediterranean Sea Area is conqidered such). From' a die-
ancte it appears rather a meager type of .,egetatio:-. but

upon close inspection one finds that it is composed of dense
and nearly impenetrable much-branched shrubs and small
trees. 3 to !3 feet in height. The stiff branches are fairly
regularly interlaced. Examples are the chaparral of

f Califortnia and -•acchia o- garigue of the Mediterranean
area. The live or green oak predominates in these areas.
and in some areas, wheie water moisture is more
ahundent, there are larger treer ranging up to 50 feet in
height. The dryer areas are more like the Tamauhpan areas.

STemperate Forest Tasnan Sabanitarctic forest. Similar to its counterpart the Oregonian
forest of the northern hemisphere. but with less variety of
deciduous trees. The conifers are sr.aller than those found
in the northern hemisphera conifer forosts but are more
densely spaced than their counterparts.

[0 Temperate Forest • Alaskan Ti.taa forst. A stunted conifer forest with isolated stands
of deciduous trees, such as &apen, cottonwood, and birch
(whicy may be locally dominant), which attaio a height of
50 to 80 feet at the Inwer latitudes and degenerate into
small trees and shrubs in the northern subarctic regions.
Meadows are tnterspaced throughout forest and create
boggy quagmires in the summer. in the subarctic northern
regions mueket penetrates much of the taiga forest.

it Temperate Forest Oegonian 9U.L1Sf*A These forests consist of conifers varying
anywhere froes 100 to 100 feet in height, mid where there
i6 re=*i•lve recipit.tion. such an the Olypic peneula,

the tropicarlth r e foretf
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TABLE 14

Coastal Vegetation (concluded)

Identification Vegetation V egetatio~n
Number Class

2 niperato Fo.rest Virginian _tis~il dociduuu lend tunifer forest. That* forest* L.onista
of mixed deciduous hardwoods and locally predomiinate

I onifers sich as pine. To the south this type of forest
grades into the Kyushun type, an'd to the north it grades
into the pure conifer or taisga forest. Trees are 80 to
100 feet in height and moderately to closely spaced. Under-
growth varive from little or none to very dense depending
on soil and stpacing of the trees.

It tomperate iiirrat t~uahuin Warnm tea0!BErt~e1rain frett!i. TIhis is an "vergreen forest
tif tPie ternparate iltmati's whit-h onder favorable climates
merges with the tropical rain forests. The trees are
so.',cwhat simaller than those found in this tropical -&in
forest, and they have smaller leaves.

14 rriipii al Shoirv Woodiland Irrawaddyan LManerove _Nip& Pýal. Cla iunl.(onsists of two ba~sic.
types 'The first III the type that grows as a beach %woodland
Along the upper heath ,.one or tiackshore and in uw~mpy
freet, water areas. These tret3 ar- tof moderate height
growing ito 30 to 40 feet, with iarge leathery leaves. The
second type is the tidal woodiand where the trees grow in
water adjacent ito the shore. These trees are not limited
to. but are predominately, the mangrove. Nipa palm also
is a major type hut is normally found in the brackish water%
of tidal estuaries and fresh/salt marshes. Both types piv.
sent a very formidable barrier. They occur on the coast In
front of many other types of coastal vegetation, such a*
identification n imbers 19. 18. 17. 16, IS, and swamps.

They have even grown off desert areas such as the Arabian
coast facing the Ited Sea.

It rr..picst Scrub Tampicrian Thorn forest or thorvi scrub. A itenue scrubby forest of
large shrubs and scaittered trees op to U)1 or 40) feet in
height. Very close spaced, hardwood, deciduous thorn
shrubs are predominate and nearly impenetrable. Rain-1
fall IS- 30 inches annually with hot humid summers t rainy
periodW with Lool, mild, dry winters.

it, Trqpical Saienna Tamautipan Desert suvanna, Consists at gratses with internmittently
dispersed dwarf treed. Grasst recach a hevight of
about ifeet. Found tbetween tamaulipan (in mins side and
tropical deser.s on the other Rtainfall amounts to IS to 30

inchv'n annuall).
17 tropical Savanna Tim( ran Savanna forest or Woodland. Consists of tall gr-asses

with interspersted trees or small wood*. These trees
are of the "umbrella" type with thick Pad gnarled trunks
and oranches which shed their leaves, during the drought
periodsi. These areas are localized rather than regioral.
Annual rainfall is 10.50 "ches. Tropicel Savannas arv
the trainsitional areas between the tropical forests and
the tropical deserts.

iii Tropical Forest Nicaraguan Deciducus or Monsoon forest. Similar to Malayan tiype,
however, rains are seasonal thus leadling toi dry periods
where both the trees and undergrowth are void of fWiage.
Secause of these perioids of d'-uight, the undergrowth is
much more dense and nearly impeni-trable while the
upper canopy is not nearly ato onitrinsuous thus allowing
both ;,round undergrowth and an. unider canopy of s.-naller
growth consisting of pamTs an'ti hanituoo thickets to develop.
Upper canopy reaches a height tif 80O to 100 feet. During
%et season So to 70) in. of rain are received and it is
similar tii the evergreen forest.

19 Tropical Forest Malayan Evergireen rain forest. Derse evergreen tropical forests
are those whose thick canopy of leaves and branches
exclude much of the sunlight, thus inhibitiuig the under-
growth. Foreist ceiling is nearly continuous and between
100 to 140 feet in height. Soil is clayey. 100+ in. of
ramn annualty.

SIMt Swam-si'Marebte .. Salt water swamps and marshes t.. q not have
Irrawvaddyan types of vegetation.

SF Salt Flate Sat flats caused by tidal conditions where salt water *v&,po-
rates on a plain leaving almost pure salt.
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TABLE 15

Types of Coastal Vegetation by Percentage of Total
(Vegetation Type Number Corresponds to Identificatior. Number in Table 14)

Vegetation
Identification Number of Miles

No. Percentage of Coastline

I 19 w/14 21.29 37,325
4 10.27 17,995

12 9.41 16,500
8 9.30 16 300

17 w/14 8.36 14,655
10 5.86 10,280
13 5.42 9,495
18 w/14 4.74 8,315

3 3.60 6,310
16 2.99- 5,240

9 2.48 4,350
5 2.24 3,925
1 • 2.20 3,860
I 1.85 3,235

15 1.52 2,660
15 w/14 1.43 2,500
6 1.13 1,980
7 w/14 1.07 1,880

SIM 10 0z 1,785
18 .90 1,570

S19 w114 & S/M .85 1,485
2 .68 1,190

SF .34 595H19 .31 535
S/M w/14 .29 S00
17 .17 300
16 w/14 .15 265
3 w/14 .13 230

17 & 19 w/14 .02 30
Total 175, 290

Note: Accuracy on map could be measured only to the nearest 30 or 35 miles.

10.2.4,3.2 Construction Materials

Excluding architectural pecularities, man-made construction
materials vary little in urban areas around the world, for even undeveloped
countries either trade for finished building materials or have the capability

of producing their own. Although rural areas may principally use locally
available materials, notably wood, the natural materials, not the man-made
ones, will dominate the rural scene.
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10.2.4.4 Surface Material Data Sources

10.2.4.4.1 Generai

The data on the reflectance curves discussed in this section
"were taken from the University of Michigan data bank as they appear in abso-
lute format for the Air Force's Target Signature Program. These do not
agree with those published by the University of Michigan because their data
are relative reflectance rather than absolute reflectance, in many cases.
The emittance curves were obtained from the Compilation of Spectral Emit-
tance of Background and Target Constituents in the 8- to 14-Mission Range

(Reference 19). The discussion of various types of soils was based on
Appendix B, A Regional Economic Geograph, (Reference 45). The data
on the coastal vegetation types were derived from Natural Coastal Environ-
ments of the World (Reierence 44) and Coastai Geography Conference (Refer-
ence 46).

10.2.4.4.2 Processed Data

The reflectance and emittance curves presented in the sections
on natural materials represent the statistical groupings of many original indi-
vidual curves. For example, the curve for the tree foliage (composite of
deciduous, tropical evergreen, palmaceous, and coniferous foliage) repre-
sents some 900 separate curves. The result of each grouping is called a sta-
tistical set which consists of three curves: a mean of the set and the + one sigma
of the set. Figure 327 illustrates how the sets were derived. However, the
reflectance and emittance curves presented in the sections on man-made con-
struction materials do not represent statistical groupings because of the insuf-
ficiency of the original individual curves; for example, the four composit-t
cement/concrete curves represent fewer than 20 separate curves. Note that
all reflectance data published herein is absolute reflectance, rather than rela-
tive to the measurement standard as published in the work of the University of
Michigan.

10.2.4.4.3 Data Gaps

There is very little emittance data for either natural or man-
made objects; moreover, the available data is generally not continuolls from
0. 2 to 14.0 p.mn Although more data is available for spectral reflectance, most
of the represented materiats, both natural and man-made, are found only in the
Continental United States, Hawaii, Puerto Rico, or Cuba (one soil type). Al-
though the given vegetation curves likely represent world-wide vegetation, there
are many other species of vegetation whose measurements have not been ac-
quired to either confirm or deny this assumption. Another gap exists for di-
rectional reflectance data over the given spectral region. There are some iso-
lated examples of directional reflectance and emittance data for one or two
specific wavelengths, but they are far from continuous. For most materials,
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lambertian surfaces can be safely used; however, materials such as water,
glass, and polished metals are highly specular in nature.
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U 11I. Summaryv and Conclusions

as mucThis research was directed toward the assembly oi data describing
naval targets and backgrounds for studies of night sensing systems. The

Sclassified and open literature was searched, and all known data sources
were contacted for unpublished data. A library of 639 documents was as-

cembled. The best available data for target scene materials specification
are reported herein. Emittance and reflectance data were collected for

[I the most important materials across the complete spectrum from 0. 2 to

• L] 14.0gm. A few extrapolations were made to extend incomplete data, with

as much cross-checlring as possible being done to validate these calculated
S~ values.
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Many types of data had to be assembled from many different and varie-
gated sources. Moast of thie effortwas expended in finding the data and de-
termnining how to convert it into consistent, useful, and valid units. Much
desired data is incomplete or missing. The calculations presented herein
represent a first attempt at providing a complete set of data in one document.

The principal illumination sources were determined to be the moon,
stars, nightglow, and tropospheric thermal radiation. Each of these was
studied to quantify their radiation into consistent and absolute values of radio-
metric units such as spectral irradiazce in watts per square meter. The total
spectral energy from each source to the earth's surface was calculated for
horizontal and vertical surfaces. This calculation was based on the selective
transmission of a model US Standard Atmosphere with Elterman's particle
distribution added, which should be reasonable for sea conditions on clear
nights. The selective atmospheric spectral transmission as affected by
water vapor, carbon dioxide, ozone, and sbattering particles was cal*ulated
for various zenith angles. The night sky as a background was also calculated.

All data are presented as a series of plots generated by a computer.
Materiala are represented as reflectance or emittance versus wavelength.
Energy is represented as radiance or irradiance versus wavelength. At-
mospheric transmission is represented as transmittance versus wavelength.
All data used are in radiometric units, and all plots have consistent scales
for ease of reading. This data can be used to evaluate the utility of any part
of the spectrum from 0.2 to 14.0gm for naval night sensing. This report pro-
vides a consistent evaluation of one band (visible, near IR, far IR) against
another because the same calculation techniques are used for each part of
the spectrum and compatible units are used throughout.

Data to describe the radiative effects governing night naval sensing are
available with sufficient quantity and quality to support useful ahalyses. The
reported results will serve as a basis for further expansion and refir:ement.

12. Recommendations

To improve upon the data presented in this report, three specif i. efforts
are recommended: First, certain missing or incomplete measurements should
be made. Second, these data should be combined with a sensor simulation
model to evaluate actual system performance. Third, a set of refined calcu-
lations should be made for each of the night-sensing phenomena; such calcula-
tions should include a finer spectral resolution for a large number of specific
naval targets, backgrounds, and sensor systems.

In addition, new data should be measured to fill gaps, and refined calcu-
lation techniques should be applied to permit complete sensor system evalua-
tion.
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Figure 39. Tranismittance Component Caused by Particle Scattering and
Ozone (Elterman Method) for Sky Segment 8, Zenith Angle of 75. 51, (UI)
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Figure 40. Transmittance Component Caused by Part' [e Scattering and

Ozone (Elterman Method) for Sky Segment 9, Zenith Angle of 81. 4-
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Figure 43. Transmittance Component Caused by Ozone (3. 4-14 4m) for -
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Figure 44. Transmittance Component Caused by Ozone (3. 4-14 Vm) for
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SFigure 45. Transmittance Component Caused by Ozone (3. 4-14 Umn) for

Sky Segment 3, Zenith Angle of 41.4"'
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Figure 46. Transmittance Component Caused by Ozone (3. 4-14 urm) for

Sky Segment 4, Zenith Angle of 49.450
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Figure 51. Transmittance Component Caused by Ozone (3, 4-14 um) for
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Figure 54. Trnmttac Component Caused by Water Vapor for Sky
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Figure 55. Transmittance Component Caused by Water Vapor for Sky

Segment 1, Zenith Angle of 31. 7"
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"Figure 56. Transmittance Component Caused by Water Vapor for Sky

Segment 3, Zenith Angle of 41.40
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* Figure 63. Transmittance Component Caused by Water Vapor for Sky
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Figure 62. Transmittance Component Caused by Water Vapor for Sky
Segment 9, Zenith Angle of 81.4"
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Figure 67. Transmittance Com!)onent Caused by Carbon Dioxide for Sky
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Figure 68. Transmittance Component Caused by Carbon Dioxide for Skyl Segment 4, Zenith Angle of 49. 5v
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Figure 85. Spectral Stellar Irradiance for 0. 1 of the Sky Above the
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Figure 89. Spectral Stellar Irradiance for 0. 1 of the Sky at the
Surface, Sky Segment 4, Zenith Angle of 49. 5-
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Figure 95. SpecLral Stellar Irradiance for 0. 1 of the Sky at the
H Surface, Sky Segment 10, Zenith Angle of 87. 2'
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Figure 96. Spectral Stellar Irradi.ace for 0. i of the Sky Illuminating
a Horizontal Surface, from Sky .Segment 1, Zenith Angle of 18. 10
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Figure 97. Spectral Stellar Irradiance for 0. 1 of the Sky Illuminating a

Horizontal Surfaci•, from Sky Segment 2, Zenith Angle of 31. 7"
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Figure 98. Spectral Stellar Irradiance for 0. 1 of the Sky Illuminating a
Horizontal Surface, from Sky Segment 3, Zenith Angle of 41.4"
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Figure 99. Spectral Stellar irradiance for 0. 1 of Lhe Sky Illuminating a
i Horizontal Surface, from Sky Segment 4, Zenith Angle of 49. 5'
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Figure 100. Spectral Stellar Irradiance for 0. 1 of the Sky Illuminating a

Horizontal Surface, from Sky Segment 5, Zenith Angle of 56. 6°
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Figure 101. Spectral Stellar Irradiance for 0. 1 of the Sky Illuminating a
Horizontal Surface, from Sky Segment 6, Zenith Angle of 63.5Z'
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Figure 105. Spectral Stellar Irradiance for 0. 1 of the Sky Illuminating a

Horizontal Surface, from Sky Segment 10, Zenith Angle of 87.20
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Figure 106. Spectral Stellar Irradiance for 0. 1 of the Sky Illuminating a
Vertical Surface• from Sky Segment 1, Zenit~h Angle of 18. 10
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Figure 107. Spectral Stellar Irradiance for 0.1 of the Sky Illuminating a

U Vertical Surface, from Sky Segment 2, Zenith Angle of 31. 7'
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Figure 108. Spectral Stellar Irradiance for 0. 1 of the Sky Illuminating a

Vertical Surface, from Sky Segment 3, Zenith Angle of 41.40
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Figure I112. Spectral Stellar Irradian~ce for 0. 1 of the Sky Illuminating a
Vertical Surface, from Sky Segment 6, Zenith Angle of 63.5°0
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Figure 112. Spectral Stellar Irradiance for 0. 1 of the Sky Illuminating a
Vertical Surface, from Sky Segmnent 6, Zenith Angle of 63. 20
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Figure 113. Spectral Stellar Irradiance for 0. 1 of the Sky Illuminating a
Vertical Surface, from Sky Segment 8, Zenith Angle of 75. 50
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F:gure 114. Spectral Stellar Irradiance for 0. 1 of the Sky Illuminating a
Vertical Surface, from Sky Segment 9, Zenith Angle of 81.40
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Figure 11 5. Spectral Stellar Irradiance for 0. 1 of the Sky Illuminating a
Vertical Surface, from Sky Segment 10, Zenith Angle of 87. 2'
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SFigure 122. Spectral Nightglow Irradiance for 0. 1 of the Sky at the Surface
Sky Segment 5, Zenith Angle of 56. 6'
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Figure 123. Spectral Nightglow Irradiance for 0. 1 of the Sky at the Surface
Sky Segment 6, Zenith Angle of (3.20
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1.Figure 128. Spectral Nightglow Irradiance for 0. 1 of the Sky Illuminating
a Horizontal Surface, from Sky Segment 1, Zenith Angle of 18. 10
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Figure 129, Spectral Nightglow Irradiance for 0. 1 of the Sky Illuminating
a Horizontal Surface, from Sky Segment 2, Zenith Angle of 31. 70
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Figure 130. Spectral Nightglow Irradiance for 0. 1 of the Sky Illuminating

a Horizontal Surface, from Sky Segment 3, Zenith Angle of 41.40
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'1 •Figure 132. Spectral Nightglow Irradiance for 0. 1 of the Sky Illuminating
a Horizontal Surface, from Sky Segment 5, Zenith Angle of 56. 6'
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Figure 133. Spectral Nightglow Irradiance for 0. 1 of the Sky Illuminating
a Horizontal Surface, from Sky Segment 6, Zenith Angle of 63.20
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Figure 135. Spectral Nightglow Irradiance for 0. 1 of the Sky Illuminating
a Horizontal Surface, frc-.• Sky Segment 8, Zenith Angle of 75. 50
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a Horizontal Surface, from Sky Segment 9, Zen'ith Angie of 81.4°
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Figure 137. Spectral Nightglow Irraiance for 0. 1 of the Sky Illuminating

a Horizontal Surface, from Sky Segment 10, Zenith Angle of 87. 20
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Figure 139. Spectral Nightglow Irradiance for 0. 1 of the Sky Illurminating
a Vertical Surface, from Sky Segment 2, Zenith Angle of 31. 70 [

L
L

140

L. ,L

-i - - m a7 .im m immalam



IiiU

- w

II

cc C

Ic
C

U0
U 14

C b

F 5 1 iv

LI ~MOVELENGTII M ICROMETER~S)

Figure 140. Spectral Nightglow Irradiance for 0. 1 of the Sky Illuminating

U a Vertical Surface, from Sky Segment ZZenithi Angle of 41. 40
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Figure 14Z. Spectral Nightglow Irradiance for 0. 1 of the Sky Illuminating
Sa Vertical Surface, from Sky Segment 5, Zenith Angle of 56. GO
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I Figure 143. Spectral Nightglow Irradiance for 0. 1 of the Sky Illuminating
a Vertical Surface, from Sky Segment 6, Zenith Angle of 63. 20
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Figure 144. Spectral Nightglow Irradiance for 0. 1 of the Sky Illuminating
! a Vertical Surface, from Sky' Segment 7, Zenith Angle of 69. 5*
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Figure 145. Spectral Nightglow Irradiance for 0. 1 of the Sky ilurninatinj
a Vertical Surface, from Sky Segment 8, Zenith Angle of 75. 5*
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Figure 147. Spectral Nightglow Irradiance for 0. 1 of the Sky Illuminating
a Vertical Surface, from Sky Segment 10, Zenith Angle of 87.20
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Figure 148. Total Spectral Nightglow Irradiance Illuminating a Horizontal
{• Surface
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Figure 149. Total Spectral Nightglow Irradiance Illuminating a Vertical

Surface
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Figure 151. Tropospheric Thermal Energy for 0. 1 of the Sky at the Surface,

Sky Segment 2, Zenith Angle of 31.7
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Figure 152. Tropospheric Thermal Energy for 0. 1 of the Sky: at the Surface,

L. Sky Segment 3, Zenith Angle of 41.40
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Figure 153. Tropospheric Thermal Energy for 0. 1 of the Sky at the Surface,
Sky Segment 4, Zenith Angle of 49. 5*
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Figure 154. Tropospheric Thermal Energy for 0. 1 of the Sky at the Surface,
S~Ski Segment 5, Zenith Angle of 56.6,0
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Sky Segment 6, Zenith Angle of 63. Z°
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S~Figure 156. Tropospheric Thermal Energy for 0. 1 of the Sky at the Surface,

Sky Segment 7, Zenith Angle of 6>9. 9°
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Figure 157. Tropospheric Therm•al Energy for U. I of the Sky at the Surface,
Sky Segment 8, Zenith Angle of 75. 5°
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Figure 158. Tropospheric Thermal Energy for 0. 1 of the Sky at the Surface,
S~Sky Segment 9, Zenith Angle of 81.4*
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Figure 1 59. Tropospheric Thermal Energy foi 0. 1 of the Sky at the Suarface,
Sky Segnr'ent 10, Zenith Angle of 87. Ze
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Figure 160. Tropospheric Thermal Energy for 0. 1 of the Sky Illuminating
i a Horizontal Surface, from Sky Segment 1, Zenith Angle of 18. 10
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Figure 161. Tropospheric Thermal Energy for 0. 1 of the Sky Illuminating
a Horizontal Surf'ace, from Sky Segment 2, Zenith Angle of 31. 70
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Figure 162. Tropospheric Thermal Energy for 0. 1 of the Sky IlluminatingILI a Horizontal Surface, fromi Sky Segment 3, Zenith Angle of 41.40
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Figure 163. Tropospheric T..ermal Energy for 0. 1 of the Skv Illuminating
a Horiz.)ntal Surface, from Sky Segmi.-nt 4, Zenith Angle of 49. 50
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Figure 164. lrovospheric Thermal Energy for 0. 1 of the Sky Illuminating
a Horizontal Surface, from Sky Segment 5, Zenith Angle of 56. 6'
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S~Figure 166. Tropospheric Thermal Enaergy for 0. 1 of the Sky Illuminating

a Horizontal Surface, froi-n Sky Segment 7, Zenith Angle of 69. 5'
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Figure 167. Tropospheric Thermal Energy for U. I of the Sky Illuminating L_
a Horizontal Surface, from Sky Segment 8, Zenith Angle of 75. 5"
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Figure 163. Tropospheric Thermal Energy for 0. 1 of the Sky Illuminating

L1 a Horizontal Surface, from Sky Segment 9, Zenith Angle of 8 1.40
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Figure 169. Tropospheric Thermal Energy for 0. 1 of the Sky Illuminating
E Horiyontal Surface, from Sky Segment 10, Zenith Angle of 87. 2°
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L Figure 170. Tropospheric Thermal Energy for 0. 1 of the Sky Illuminating
a Vertical Surface, from Sky Segment 1, Zenith Angle of 18. 1
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Figure 171. Tropospheric Thermal Energy for 0. 1 of the Sky Illumi~nating
a Vertical Surface, from Sky Segment 2, Zenith Angle of 31. 70
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SFigure 172. Tropospheric Thermal Energy for 0. 1 of the Sl-,y Illuminating

a Vertical Surface, from Sky Segment 3, Zenith Angle of 41. 4°
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iL Figure 174. Tropospheric Thermal Energy for 0. 1 of the Sky Illuminating
a Vertical Surface, from Sky Segment 5, Zenith Angle of 56. 60
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Figure 175. Tropospheric Thermal Energy for 0. 1 of the Sky Illuminating
a Vertical Surface, from Sky Segment 6, Zenith Angle of 63. Z2
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Figure 176. Tropospheric Thermal Energy for 0. 1 of the Sky Illuminating

a Vertical Surface, from Sky Segment 7, Zenith Angle of 69. 5P
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Figure 177. Tropospheric Thermal Energy for 0. 1 of the Sky 1L1uminating

a Vertical Surface, from Sky Segment 8, Zenith Angle of 75. 50

178

- t. ~ -- -. . -- - - - - -



i

V

Rpt

0

I rs

cc
w

2:.

iU

C-,

I

lc

w b

,- WAHVELENGTH (MICROMETERS)

SI-

L.. Figure 178. Tropospheric Thermal Energy for 0. 1 of the Sky Illuminating
a Vertical Surface, from Sky Segment 9, Zenith Angle of 81. 4'

L.

L1

Li

4 179



Li

Cr

CC

cc Lb

i b

180

&&Ji

(n

- K
Li - -,

ti,

WARVELENGTH {MICRONETER~S)

Figure 179. Tropospheric Thermal Energy for 0. 1 of the Sky Illuminating

a Vertical Surface, from Sky Segment 10, Zenith Angle of 87. 2°
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Figure 181. Total Tropospheric Thermal Energy Illuminating a Vertical '

Surface
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• ~Figure 18Z. Full Moon Irradiance Above the Atmospher"e
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Figure 184. Full Moon Irradiance When Moon is at a. Zenith A•ngle of 31.4 7"
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Figure 186. Full Moon Irradiance When Moon is at a Zenith Angle of 49. 5C
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Figure 192. Full Moon Irradiance When Moon is at a Zenith Angle of 87. 20
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•"Figure 196. Full Moon Irradiance When Moon is at a Zenith Angle of 49.65, [
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Figure 197. Full Moon Irradiance When Moon is at a Zenith Angle of 56. 60,

on a Horizontal SurfaceL
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Figure 203. Full Moon Irradiance When Moon is at a Zenith Angle of IS. V,

on a Vertional Surface
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Figure 208. Full Moon Irradiance When Moon is at a Zenithl Angle of 63. 2ý,

on a Vertical Surface
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Figure 208. Full Moon Irradiance When Moon is at a Zenith Angle of 63. 5*,
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Figure 214 . Spectral Reflectance of a Typical Naval Gray Paint
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Figure 216. Spectral Reflectance of a Gray Naval Paint from Midship Hull"-
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Figure 218. Spectral Reflectance of a Gray Naval Paint from a Patrol Craft
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Figure 222. Spectral Reflectance of a Sanded Oak Board
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Figure 223. Spectral Reflectance of a Weathered Aircraft Skin
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U. Figure 224. Spectral Emittance of Fuller Neutral Finish on Aircraft Skin
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Figure 226. Nightglow as a Background for Sky Segment Z, Zenith
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Figure 229. Nightglow as a Background for Sky Segment 5, Zenith

Angle of 56. 60
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Figure 243. Tropospheric Thermal Energy as a Background for Sky

Segment 8, Zenith Angle of 75. 5

:213



Ll

2I.6

tIi

z ,

Cr

C.az V

UU

FiueB4.ToophrcTera nrg sLBakrudio k

zo.
0~ CIi

z cc

S n Z h e 8L

2-2

14AVELENGTI1 (MICROMETERS)

Figure 244. Tropospheric Thermal Energy as a Background for Sky
Segment 10, Zenith Angle of 87. 2'

214

-VL



I.-

c c

UU
[]'U-

Uj t=J C;z -j

4x U.

[jI-j
a: a•t

MJ JcaGc
C) a
-J C;

U.-

Cz 2 3 I s 6 7 8 9 1 2 3 4 s e t2c 9

' U _

't 0.20 2.0 10.
Li WRVELENGTH (MICROMETERS)
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Figure 248. Sea Water Reflectance for.an Incident Angle of 600
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Figure 249. Sea Water Reflectance for an Incident Angle of 700L
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Figure 250. Sea Water Reflectance for n Incident Angle of 800. [
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Figure Z54. Spectral Reflectance of Dead Deciduous/ Tropical Evergreen/ •
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Figure 254 . Spectral Reflectance of DedLeidu ous/Tropica Neerdreen/ [
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Figure Z55. Spectral Reflectance of Live Coniferous Needles
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]•Figure 257. Spectral Reflectance of Live Plant/Shrub Foliage
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H Figure 260. Spectral Reflectance of Live Crop Foliage

ILI

2

hi -J'

S

a-,

I1 * "

~Li "0.2 lR•VCLfGTItnl (~CMIEfTtE~qS)

I LIFigure 261. Spectral. Reflectance of Liea Crop Foliage

S°"

hii



°° i

3V.

"U1 U

SI•~WVE.LEM.GTM ("ICRO"ETEM$1

Figure 262. Spectral Reflectance of Live Grasses
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Figure 284. Spectral Reflectance of All Sandy Loam
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